# Inhaltsverzeichnis

## I Module

### 1 Masterarbeit

<table>
<thead>
<tr>
<th>Modul Masterarbeit - M-BGU-103726</th>
</tr>
</thead>
</table>

## 2 Geowissenschaftliche Kernkompetenzen

<table>
<thead>
<tr>
<th>Numerische Methoden in den Geowissenschaften - M-BGU-102436</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kartierkurs und Geodatenverarbeitung - M-BGU-102437</td>
</tr>
<tr>
<td>Berufspraktikum - M-BGU-103996</td>
</tr>
<tr>
<td>Projektstudie - M-BGU-102438</td>
</tr>
<tr>
<td>Angewandte Mineralogie: Geomaterialien - M-BGU-102430</td>
</tr>
<tr>
<td>Geologie - M-BGU-102431</td>
</tr>
<tr>
<td>Geothermie: Energie- und Transportprozesse - M-BGU-102432</td>
</tr>
<tr>
<td>Hydrogeologie: Methoden und Anwendungen - M-BGU-102433</td>
</tr>
<tr>
<td>Ingenieurgeologie: Labor- und Geländemethoden - M-BGU-102434</td>
</tr>
<tr>
<td>Mineralische Rohstoffe und Umwelt - M-BGU-102435</td>
</tr>
<tr>
<td>Hydrogeologie: Karst und Isotope - M-BGU-102440</td>
</tr>
<tr>
<td>Reservoir-Geology - M-BGU-103742</td>
</tr>
<tr>
<td>Sedimentpetrologie - M-BGU-103733</td>
</tr>
<tr>
<td>Geologische Gasspeicherung - M-BGU-102445</td>
</tr>
<tr>
<td>Nichtmetallische Mineralische Rohstoffe und Umwelt - M-BGU-103993</td>
</tr>
<tr>
<td>Ingenieurgeologie: Massenbewegungen und Modellierung - M-BGU-102442</td>
</tr>
</tbody>
</table>

## 3 Geowissenschaftliche Vertiefungen

<table>
<thead>
<tr>
<th>Hydrogeologie: Grundwassermodellierung - M-BGU-102439</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogeologie: Karst und Isotope - M-BGU-102440</td>
</tr>
<tr>
<td>Hydrogeologie: Gelände- und Labormethoden - M-BGU-102441</td>
</tr>
<tr>
<td>Ingenieurgeologie: Massenbewegungen und Modellierung - M-BGU-102442</td>
</tr>
<tr>
<td>Angewandte Mineralogie: Petrophysik - M-BGU-102443</td>
</tr>
<tr>
<td>Angewandte Mineralogie: Tone und Tonnminerale - M-BGU-102444</td>
</tr>
<tr>
<td>Geologische Gasspeicherung - M-BGU-102445</td>
</tr>
<tr>
<td>Geochemische Prospektion - M-BGU-102446</td>
</tr>
<tr>
<td>Angewandte Geothermie - M-BGU-102447</td>
</tr>
<tr>
<td>Themen der Geothermieforschung - M-BGU-102448</td>
</tr>
<tr>
<td>Bohrloch-Technologie - M-BGU-102449</td>
</tr>
<tr>
<td>Structural Geology - M-BGU-102451</td>
</tr>
<tr>
<td>Petrologie - M-BGU-102452</td>
</tr>
<tr>
<td>Umweltgeologie: Radio- und chemotoxische Elemente - M-BGU-102455</td>
</tr>
<tr>
<td>Geowissenschaftliche Geländeübung / Excursion - M-BGU-102456</td>
</tr>
<tr>
<td>Sedimentpetrologie - M-BGU-103733</td>
</tr>
<tr>
<td>Diagenesis and Cores - M-BGU-103734</td>
</tr>
<tr>
<td>Reservoir-Geology - M-BGU-103742</td>
</tr>
<tr>
<td>Mineralisch gebundene Werkstoffe im Bauwesen - M-BGU-102453</td>
</tr>
<tr>
<td>Nichtmetallische Mineralische Rohstoffe und Umwelt - M-BGU-103993</td>
</tr>
</tbody>
</table>

## 4 Fachbezogene Ergänzung

<table>
<thead>
<tr>
<th>Theoretische Bodenmechanik (bauIM5P1-THEOBM) - M-BGU-100067</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erd- und Grundbau (bauIM5P2-ERDB) - M-BGU-100068</td>
</tr>
<tr>
<td>Felsmechanik und Tunnelbau (bauIM5P3-FMTUB) - M-BGU-100069</td>
</tr>
<tr>
<td>Umweltgeotechnik (bauIM5S09-UMGEO) - M-BGU-100079</td>
</tr>
<tr>
<td>Elektronenmikroskopie I - M-PHYS-103760</td>
</tr>
<tr>
<td>Elektronenmikroskopie II - M-PHYS-103761</td>
</tr>
<tr>
<td>Wasserchemie und Wassertechnologie - M-CIWVT-103753</td>
</tr>
<tr>
<td>Grundwasser und Dammbau (bauIM5S04-GWDA) - M-BGU-100073</td>
</tr>
<tr>
<td>Geotechnisches Ingenieurwesen (bauIM5F7-GEOING) - M-BGU-103698</td>
</tr>
<tr>
<td>Water Technology - M-CIWVT-103407</td>
</tr>
</tbody>
</table>

Angewandte Geowissenschaften Master

Modulhandbuch mit Stand 26.06.2018 für Sommersemester 2018
<table>
<thead>
<tr>
<th>Teilleistungen</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altlasten - Untersuchung, Bewertung und Sanierung - T-BGU-100089</td>
<td>69</td>
</tr>
<tr>
<td>Angewandte Geothermie -</td>
<td>69</td>
</tr>
<tr>
<td>Bohoröhotechnologie - T-BGU-104851</td>
<td>72</td>
</tr>
<tr>
<td>Bohoröhotechnologie - T-BGU-104851</td>
<td>73</td>
</tr>
<tr>
<td>Diagenesis - T-BGU-107559</td>
<td>74</td>
</tr>
<tr>
<td>Elektronenmikroskopie I - T-PHYS-107599</td>
<td>75</td>
</tr>
<tr>
<td>Elektronenmikroskopie II - T-PHYS-107600</td>
<td>76</td>
</tr>
<tr>
<td>Erd- und Grundbau - T-BGU-100068</td>
<td>77</td>
</tr>
<tr>
<td>Exkursion Allgemeine Geothermie - T-BGU-107635</td>
<td>79</td>
</tr>
<tr>
<td>Felsmechanik und Tunnelbau - T-BGU-100069</td>
<td>80</td>
</tr>
<tr>
<td>Field Course Applied Structural Geology - T-BGU-107508</td>
<td>81</td>
</tr>
<tr>
<td>Geochronologische Prospektion - T-BGU-104843</td>
<td>82</td>
</tr>
<tr>
<td>Geochemische Gasspeicherung - T-BGU-104841</td>
<td>83</td>
</tr>
<tr>
<td>Geotechnisches Ingenieurwesen - T-BGU-107465</td>
<td>84</td>
</tr>
<tr>
<td>Geothermie: Energie- und Transportprozesse - T-BGU-104813</td>
<td>85</td>
</tr>
<tr>
<td>Geothermische Nutzung - T-BGU-108017</td>
<td>86</td>
</tr>
<tr>
<td>Geowissenschaftliche Geländeebnung/Exkursion - T-BGU-104878</td>
<td>87</td>
</tr>
<tr>
<td>Gründen des Projektmanagements - T-BGU-107639</td>
<td>88</td>
</tr>
<tr>
<td>Grundwasser und Dammbau - T-BGU-100091</td>
<td>89</td>
</tr>
<tr>
<td>Hydrogeologie: Gelände- und Labormethoden - T-BGU-104834</td>
<td>90</td>
</tr>
<tr>
<td>Hydrogeologie: Grundwassermodellierung - T-BGU-104757</td>
<td>91</td>
</tr>
<tr>
<td>Hydrogeologie: Karst und Isotope - T-BGU-104758</td>
<td>92</td>
</tr>
<tr>
<td>Hydrogeologie: Methoden und Anwendungen - T-BGU-104750</td>
<td>93</td>
</tr>
<tr>
<td>Industrial Minerals and Environment - T-BGU-108191</td>
<td>94</td>
</tr>
<tr>
<td>Ingenieurgeochemische Arbeits- und Geländemethoden - T-BGU-104814</td>
<td>95</td>
</tr>
<tr>
<td>Ingenieurgeochemische Geowissenschaften und Modellierung - T-BGU-104836</td>
<td>96</td>
</tr>
<tr>
<td>Kartierung und Geodatenverarbeitung - T-BGU-104819</td>
<td>97</td>
</tr>
<tr>
<td>Masterarbeit - T-BGU-107516</td>
<td>98</td>
</tr>
<tr>
<td>Microstructures - T-BGU-107507</td>
<td>99</td>
</tr>
<tr>
<td>Mineral- und Gesteinsphysik - T-BGU-104838</td>
<td>100</td>
</tr>
<tr>
<td>Mineralisch gebundene Rohstoffe im Bauwesen - T-BGU-104856</td>
<td>101</td>
</tr>
<tr>
<td>Mineralische Rohstoffe und Umwelt - T-BGU-104815</td>
<td>102</td>
</tr>
<tr>
<td>Numerische Methoden in den Geowissenschaften - T-BGU-104816</td>
<td>103</td>
</tr>
<tr>
<td>Oberseminar Geothermie - T-BGU-104847</td>
<td>104</td>
</tr>
<tr>
<td>Petrologie - T-BGU-104854</td>
<td>105</td>
</tr>
<tr>
<td>Projektstude - T-BGU-104826</td>
<td>106</td>
</tr>
<tr>
<td>Radiokeinechemische Geländeebnung und Seminar - T-BGU-107623</td>
<td>107</td>
</tr>
<tr>
<td>Reservoir-Analogs and Core Description - T-BGU-107624</td>
<td>108</td>
</tr>
<tr>
<td>Reservoir-Geologie - T-BGU-107563</td>
<td>109</td>
</tr>
<tr>
<td>Sedimentpetrologie - T-BGU-107558</td>
<td>110</td>
</tr>
<tr>
<td>Spezialthemen der Angewandten Geothermie - T-BGU-104846</td>
<td>111</td>
</tr>
<tr>
<td>Stadtökologie - T-BGU-103001</td>
<td>112</td>
</tr>
<tr>
<td>Stadtökologie Praktikum - T-BGU-106685</td>
<td>113</td>
</tr>
<tr>
<td>Stadtökologie Vorlesung - T-BGU-106684</td>
<td>114</td>
</tr>
<tr>
<td>Studienarbeit &quot;Erd- und Grundbau&quot; - T-BGU-100178</td>
<td>115</td>
</tr>
<tr>
<td>Studienarbeit &quot;Felsmechanik und Tunnelbau&quot; - T-BGU-100179</td>
<td>116</td>
</tr>
<tr>
<td>Theoretische Bodenmechanik - T-BGU-100067</td>
<td>117</td>
</tr>
<tr>
<td>Tonmineralogie Einführung - T-BGU-104839</td>
<td>118</td>
</tr>
<tr>
<td>Tonmineralogie Vertiefung - T-BGU-104840</td>
<td>119</td>
</tr>
<tr>
<td>Überragendeponien - T-BGU-100084</td>
<td>120</td>
</tr>
<tr>
<td>Umweltgeologie: Radio- und chemotoxische Elemente - T-BGU-107560</td>
<td>121</td>
</tr>
<tr>
<td>Wasserchemie und Wassertechnologie - T-CIWVT-107585</td>
<td>122</td>
</tr>
</tbody>
</table>
Teil I
Module

1 Masterarbeit

Modul: Modul Masterarbeit  [M-BGU-103726]

Verantwortung: Philipp Blum
Einrichtung: Universität gesamt
Curriculare Verankerung: Pflicht
Bestandteil von: Masterarbeit

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Kennung Teilleistung LP Verantwortung
T-BGU-107516 Masterarbeit (S. 100) 30 Philipp Blum

Voraussetzungen

Qualifikationsziele
Die Studierenden wenden die im Studium erworbenen Fachkenntnisse und erlernten Methoden im Rahmen einer wissenschaftlichen Arbeit an.

Sie entwickeln selbständig die Konzeption und gestalten die notwendigen Schritte zur Durchführung der Arbeit. Hierzu formulieren sie eine Fragestellung, ordnen sie in den aktuellen Stand der Forschung ein und wählen die passenden Methoden zu ihrer Bearbeitung aus. Die einzelnen Projektschritte werden von ihnen selbst organisiert.

Die gewonnenen Ergebnisse werden vor dem Hintergrund des Forschungsstandes kritisch hinterfragt. Die zusammenfassende Darstellung der Vorgehensweise, Methoden und Ergebnisse erfolgt fachgerecht in schriftlicher Form sowie einer ergänzenden Präsentation.

Inhalt
Je nach Themenwahl unterschiedlich

Arbeitsaufwand
900 Stunden Eigenstudium
2 Geowissenschaftliche Kernkompetenzen

Modul: Numerische Methoden in den Geowissenschaften [M-BGU-102436]

Verantwortung: Thomas Kohl

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Kernkompetenzen

Leistungspunkte: 6

Turnus: Jedes Wintersemester

Dauer: 1 Semester

Sprache: Englisch

Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104816</td>
<td>Numerische Methoden in den Geowissenschaften (S. 105)</td>
<td>6</td>
<td>Thomas Kohl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)


Voraussetzungen

keine

Qualifikationsziele

- Die Studierenden können ein numerisches Simulationsprogramm anwenden.
- Sie erlangen Kenntnis grundlegender Verfahren der Statistik und Wahrscheinlichkeitsrechnung im Hinblick auf die Analyse geowissenschaftlicher Daten sowie der Prozessmodellierung.
- Sie beherrschen MatLab als Programmiersprache.

EN:
- The students are able to apply a numerical simulation model
- The students obtain knowledges in basic applications of statistical and probability calculations for analysis of geoscientific data and modelling of processes
- The students are able to handle Matlab as programming language

Inhalt

- Matlab als Programmiersprache: Einleitung, Basics, Graphik
- Statistische Verfahren und Wahrscheinlichkeitsverfahren geowissenschaftlicher Daten
- Physikalische Mechanismen und Prozesse in den Geowissenschaften
- Numerische Strategien zur Lösung komplex-gekoppelter Prozesse (finite Differenzen, finite Elemente, Kopplung)
- Einführung in die Reservoirsimulation
- Berechnung: Doublette mit analytischen Kalibrationsmodellen

EN:
- Matlab as programming language: introduction, basics, graphics
- Statistical methods and probability calculations of geoscientific data
- Physical mechanisms and processes in geosciences
- Numerical strategies for solution of complex coupled processes (finite differences, finite elements, coupling)
- Introduction into reservoir simulation
- Calculation of a doublet with analytical calibration models

Empfehlungen

eigener PC/Laptop

Angewandte Geowissenschaften Master
Modulhandbuch mit Stand 26.06.2018 für Sommersemester 2018
EN: Own laptop/PC

Anmerkung
EN: Homework required

Arbeitsaufwand
50 Stunden Präsenzzeit und 130 Stunden Eigenstudium
Modul: Kartierkurs und Geodatenverarbeitung [M-BGU-102437]

Verantwortung: Kirsten Drüppel

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Kernkompetenzen

Leistungspunkte | Turnus | Dauer | Sprache | Version
--- | --- | --- | --- | ---
8 | Jedes Sommersemester | 1 Semester | Deutsch | 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104819</td>
<td>Kartierkurs und Geodatenverarbeitung (S. 99)</td>
<td>8</td>
<td>Kirsten Drüppel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine

Qualifikationsziele
- Die Studierenden sind in der Lage, selbständig geologische Aufnahmen in einem unbekannten Gelände durchzuführen und geologische Karten mittels GPS-Daten und GIS zu erstellen.
- Sie können die Daten interpretieren und daraus das Potential möglicher Georessourcen bewerten.

Inhalt
- Einführung in die Geologie des Kartiergebietes
- Kartierung sedimentärer, magmatischer und metamorpher Gesteine und ihre strukturelle Lagerung
- Zeichnen von Profilen, Interpretation der Karte
- Bewertung des Potentials vorhandener Georessourcen und ihre Vorratsberechnung
- Einführung in die Bearbeitung geologischer Fragestellungen mit Geoinformationssystemen
- Anleitung zur selbstständigen Anfertigung digitaler geologischer Karten
- Bewertung und Analyse von Geodaten mit geologischem Hintergrund
- Verwaltung von Geodaten nach festgelegten Standards

Arbeitsaufwand
90 Stunden Präsenzzeit und 150 Stunden Eigenstudium
Modul: Berufspraktikum  [M-BGU-103996]

Verantwortung:    Philipp Blum

Einrichtung:    KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung:    Wahlpflicht

Bestandteil von:    Geowissenschaftliche Kernkompetenzen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-108210</td>
<td>Berufspraktikum (S. 72)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)


Voraussetzungen

Der/die Studierende ist für die Akquisition und Organisation des Praktikumsplatzes selbst verantwortlich. Für die Anerkennung gelten folgende Voraussetzungen:
- Der/die Studierende sucht sich vor Antritt des Praktikums eigenständig einen prüfungsberechtigten Dozenten der AGW (in Zweifelsfällen Vorsitzender des Prüfungsausschusses), welcher
  1. Die geowissenschaftliche Relevanz aufgrund der Vorlage eines mit der betreffenden Firma/Institution abgestimmten schriftlichen Arbeitsplanes (Inhalt, zeitlicher Rahmen) bestätigt und für die Benotung des abschließenden Berichtes verantwortlich ist.

Qualifikationsziele

- Studierende sind in der Lage, die im Studium erworbenen Fähigkeiten unter realistischen Bedingungen einzusetzen.
- Sie sind in der Lage fachliche sowie überfachliche Kompetenzen wie zum Beispiel Projektmanagement im beruflichen Umfeld gezielt weiter zu entwickeln und anzuwenden.

Inhalt

- Je nach Praktikumsstelle unterschiedlich.
- Es soll sich im Wesentlichen um eine selbständige Arbeit handeln.

Anmerkung

Die Prämissen für die Anerkennung eines Berufspraktikums sind in den Voraussetzungen erläutert.

Arbeitsaufwand

Mindestens 4 Wochen Praktikum in Vollzeit und Anfertigung eines Praktikumsberichts.
### Modul: Projektstudie [M-BGU-102438]

**Verantwortung:** Philipp Blum

**Einrichtung:** KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

**Curriculare Verankerung:** Wahlpflicht

**Bestandteil von:** Geowissenschaftliche Kernkompetenzen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>2</td>
</tr>
</tbody>
</table>

**Pflichtbestandteile**

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104826</td>
<td>Projektstudie (S. 108)</td>
<td>5</td>
<td>Philipp Blum</td>
</tr>
<tr>
<td>T-BGU-107639</td>
<td>Grundlagen des Projektmanagements (S. 90)</td>
<td>0</td>
<td>Philipp Blum</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**


**Voraussetzungen**

keine

**Qualifikationsziele**

- Die Studierenden sind mit den Grundlagen des Projektmanagements vertraut.
- Sie können eine Zeit- und Ressourcenplanung für eine gegebene Problemstellung aus den Angewandten Geowissenschaften vornehmen.
- Sie bearbeiten die gegebene Problemstellung nach ihren eigenen Planungen.
- Sie arbeiten die Ergebnisse schriftlich in Form eines Projektberichts aus.
- Sie präsentieren die wichtigsten Ergebnisse in einem Vortrag.

**Inhalt**

- Lehrveranstaltung „Grundlagen des Projektmanagements“.
- Bearbeitung einer Problemstellung. Diese kann je nach Abteilung unterschiedlich ausgestaltet werden.

**Anmerkung**


**Arbeitsaufwand**

- 20 h Präsenzzeit (Lehrveranstaltung „Grundlagen des Projektmanagements“, 1 SWS, 1/2 d Anwesenheit bei Präsentationen)
- 130 h Eigenstudium (Projektplanung, Projektbearbeitung, Anfertigung des Berichts, Vorbereitung des Vortrags)
Modul: Angewandte Mineralogie: Geomaterialien  [M-BGU-102430]

Verantwortung: Frank Schilling

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Kernkompetenzen

Leistungspunkte  Turnus  Dauer  Sprache  Version
5  Jedes Wintersemester  1 Semester  Deutsch  1

Pflichtbestandteile

Kennen  Teilleistung  LP  Verantwortung
T-BGU-104811  Angewandte Mineralogie: Geomaterialien (S. 71)  5  Frank Schilling

Erfolgskontrolle(n)

Voraussetzungen
keine

Qualifikationsziele

• Die Studierenden haben Kenntnis von grundlegenden analytischen Verfahren der angewandten Mineralogie.
• Sie können mineral- und petrophysikalische Mechanismen und Prozesse auf verschiedenen Skalen kennzeichnen.

Inhalt

• Analytische Verfahren in der Angewandten Mineralogie: Grundlagen der analytischen Verfahren mit Elektronen, Röntgen- und Neutronenstrahlung, qualitative und quantitative Phasenanalyse, Anwendungsbeispiele
• Mineral- und petrophysikalische Mechanismen und Prozesse von der atomaren bis zur makroskopischen Skala: Porosität, Permeabilität, elastische Eigenschaften, Transporteigenschaften, Korngröße und Korngrößenverteilung und ihr Einfluss auf petrophysikalische Eigenschaften, magnetische Eigenschaften von Mineralen und Gesteinen und deren Anisotropie für Gefügeuntersuchungen
• Experimentelle Methoden

Arbeitsaufwand
60 Stunden Präsenzzeit und 90 Stunden Eigenstudium
Modul: Geologie  [M-BGU-102431]

Verantwortung: Christoph Hilgers

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Kernkompetenzen

Leistungspunkte | Turnus | Dauer | Sprache | Version
--- | --- | --- | --- | ---
5 | Jedes Wintersemester | 1 Semester | Englisch | 1

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104812</td>
<td>Geologie (S. 83)</td>
<td>5</td>
<td>Christoph Hilgers</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine

Qualifikationsziele
- Students will be trained to apply structural geology at an advanced level and using real world examples.
- Students will be trained to link rocks to depositional systems and vice versa.

Inhalt
Applied Structural Geology:
- Stress and Strain
- Fractures and Mohr Circle
- Joints and Veins
- Normal faults
- Thrust faults
- Strike slip faults
- Inversion
- Strain measurements
- Diapirs & Intrusions
- Folds
- Folds and Cleavage
- Microstructures
- Maps / Structural Analysis

Depositional Systems:
- Overview, description of sediments
- Eolian systems
- Fluvial systems
- Estuaries and incised valleys
- Deltas & Clastic Shorelines
- Evaporites
- Clastic shelves
- Reefs and platforms
- Submarine fans and Turbidites
- Sea level change
- Sequence stratigraphy
Literatur

Structural Geology

Depositional Systems
Slatt, R.M. 2006. Stratigraphic reservoir characterization for petroleum geologists, geophysicists and engineers. Elsevier 478 pp

Arbeitsaufwand
60 Stunden Präsenzzeit und 90 Stunden Eigenstudium
Modul: Geothermie: Energie- und Transportprozesse  [M-BGU-102432]

Verantwortung: Thomas Kohl
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Geowissenschaftliche Kernkompetenzen

Leistungspunkte | Turnus | Dauer | Sprache | Version
--- | --- | --- | --- | ---
5 | Jedes Wintersemester | 1 Semester | Englisch | 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104813</td>
<td>Geothermie: Energie- und Transportprozesse (S. 87)</td>
<td>5</td>
<td>Thomas Kohl, Frank Schilling</td>
</tr>
<tr>
<td>T-BGU-107635</td>
<td>Exkursion Allgemeine Geothermie (S. 79)</td>
<td>0</td>
<td>Thomas Kohl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung zu den Lehrveranstaltungen im Modul und nach § 4 Abs. 3 einer unbenoteten Studienleistung (Exkursionsteilnahme mit Bericht oder falls verhindert in Rücksprache mit dem Dozenten Hausarbeit im selben Umfang)

Voraussetzungen
keine

Qualifikationsziele
- Die Studierenden erlangen Kenntnis vom Fachgebiet der Geothermie und können wesentliche physikalische Prozesse im Themengebiet einordnen.
- Sie sind in der Lage, Methoden für geothermische Untergrunduntersuchungen anzuwenden und Berechnungen der erhobenen Daten durchzuführen.
EN:
- The students obtain knowledge in the field of geothermics and are able to integrate relevant physical processes into the subject field
- The students are able to apply methods for geothermal subsurface investigations and to make calculations with the obtained data

Inhalt
- Wärmehaushalt der Erde (Einfluss der Sonne, des Menschen, gespeicherte Wärme, Wärmeleistung)
- Wärmeverlust in Gesteinen (Phononen, Photonen, Elektronen, advektiver Wärmeverlust)
- Physikalisches Verständnis der zugrundeliegenden Mechanismen und Prozesse
- Einführung in die Geothermie, Bezüge und Abgrenzung zu Nachbardisziplinen
- Energieerhaltung, thermische und petrophysische Eigenschaften der Gesteine, Temperaturfeld der Erde, Einfluss von Topographie und Klima auf die Temperaturverteilung, Fourier Gesetz, stationäre/instationäre Wärmeleitung, Wärmeverlust in der kontinentalen und ozeanischen Kruste, Advektion durch Fließbewegung (Darcy-Gesetz), Kelvin-Problem, Gauß-Fehlerfunktionen
- Einführung in die Methoden und Anwendungen der Geothermie: Bullard Plot Interpretation, -Messverfahren, Bottom Hole Temperature Daten
- Einführung in die geophysikalische Geodynamik
EN:
- Heat budget of the Earth (influence of the sun, humans, stored heat, heat production)
- Heat transport in rocks (phonons, photons, elektrons, advective heat transport)
- Physical understanding of underlying mechanisms and processes
- Introduction into Geothermics, relations and boundaries to other related disciplines
- Energy conservation, thermal and petrophysical properties of rocks, temperature field of the Earth, influence of
topography and climate on temperature distribution, Fourier law, stationary/instationary heat conduction, heat transport in continental and oceanic crust, advection by flow (Darcy law), Kelvin problem, Gauss error function
- Introduction into methods and applications in geothermics: Bullard plot interpretation, measurement, Bottom Hole Temperature data
- Introduction into geophysical geodynamics

Anmerkung
Das Datum der Exkursion sowie der Abgabetermin für den Exkursionsbericht werden zeitnah bekanntgegeben.
EN:
The date for the excursion and the closing date for the excursion report will be promptly announced.

Arbeitsaufwand
45h Vorlesung sowie Exkursion, Bericht und Eigenstudium 105h
Modul: Hydrogeologie: Methoden und Anwendungen [M-BGU-102433]

Verantwortung: Nico Goldscheider

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Kernkompetenzen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Kennen | Teilleistung | LP | Verantwortung |
--------|--------------|----|---------------|
T-BGU-104750 | Hydrogeologie: Methoden und Anwendungen (S. 95) | 7  | Nico Goldscheider |

Erfolgskontrolle(n)

Voraussetzungen
keine

Qualifikationsziele
- Die Studierenden können globale und regionale hydrogeologische Zusammenhänge charakterisieren.
- Sie können die Grundwasserqualität und Kontaminationsprobleme selbstständig bewerten und geeignete Schutzkonzepte anwenden.
- Sie sind in der Lage, hydraulische, hydrochemische und andere hydrogeologische Methoden selbständig anzuwenden und die erhobenen Daten methodisch angemessen auszuwerten.
- Sie können Markierungsversuche planen, durchführen und auswerten.

Inhalt
- Markierungsversuche
- Grundwassererkundung und -erschließung
- Grundwasserbeschaffenheit, Darstellung von Wasseranalysen
- Stofftransport im Grundwasser
- Fortgeschrittene Pumpversuchsauswertung (Verfahren nach Hantush, Neuman, Stallman, Bourdet-Gringarten, Papadopoulos, Huisman)
- Slugtest, Einschwingverfahren, Wasserdruckversuch
- Grundlagen der thermischen Grundwassernutzung
- Grundwasserschutzkonzepte, Vulnerabilität und Grundwasserrisiko
- Hydrogeologische Praxis: Ausschreibungen, Leistungsverzeichnisse, etc.
- Regionale Hydrogeologie: Globale Perspektive, relevante regionale Fragestellungen

Arbeitsaufwand
70 Stunden Präsenzzeit und 140 Stunden Eigenstudium
Modul: Ingenieurgeologie: Labor- und Geländemethoden  [M-BGU-102434]

Verantwortung: Philipp Blum
Einrichtung: KIT-Fakultät für Bauingeneur-, Geo- und Umweltwissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Geowissenschaftliche Kernkompetenzen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

**Pflichtbestandteile**

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104814</td>
<td>Ingenieurgeologie: Labor- und Geländemethoden (S. 97)</td>
<td>7</td>
<td>Philipp Blum</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**


**Voraussetzungen**

keine

**Qualifikationsziele**

- Die Studierenden können Fels und Gebirge unter ingenieurgeologischer Perspektive beschreiben und klassifizieren.
- Sie sind in der Lage, ingenieurgeologische Kartierungen durchzuführen.
- Sie können ingenieurgeologische Labor- und Geländemethoden in angemessener Weise anwenden.

**Inhalt**


**Literatur**


**Arbeitsaufwand**

70 Stunden Präsenzzeit und 140 Stunden Eigenstudium

Angewandte Geowissenschaften Master
Modulhandbuch mit Stand 26.06.2018 für Sommersemester 2018
**Modul: Mineralische Rohstoffe und Umwelt**  [M-BGU-102435]

**Verantwortung:** Elisabeth Eiche

**Einrichtung:** KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

**Curriculare Verankerung:** Wahlpflicht

**Bestandteil von:** Geowissenschaftliche Kernkompetenzen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Jedes Sommersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

**Pflichtbestandteile**

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104815</td>
<td>Mineralische Rohstoffe und Umwelt (S. 104)</td>
<td>7</td>
<td>Elisabeth Eiche</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**

**Voraussetzungen**
keine

**Qualifikationsziele**
- Die Studierenden können geochemische Stoffkreisläufe und ihre Interaktionen charakterisieren.
- Sie haben Kenntnis von der Genese mineralischer Rohstoffe und können die wichtigsten Erzmineralien erkennen.
- Sie können Einflüsse der Rohstoffgewinnung auf die Umwelt einordnen und Strategien zur Minimierung und Sanierung von Folgen dieser Einflüsse erläutern.

**Inhalt**
- Einführung in die geochemischen Stoffkreisläufe (Interaktionen Lithosphäre/Hydrosphäre/Atmosphäre/Biosphäre)
- Transport- und Umsatzprozesse umwelt-relevanter Elemente (C, S, N, P, Metalle, As/Se)
- Einführung in das Fachgebiet der Metallogenese, spezifische Untersuchungsmethoden
- Prozesse der Erzbildung (magmatogene, hydrothermale, metamorphe, sedimentäre, diagenetische) anhand von Fallbeispielen
- Überblick über die Entstehung nichtmetallischer und fossiler Energierrohstoffe
- Auswirkungen der Rohstoffgewinnung auf Hydrosphäre, Pedosphäre, Atmosphäre sowie Mensch und Gesellschaft
- Beispielhafte Entwicklung von Strategien zur Minimierung von Umweltauswirkungen durch Rohstoffgewinnung und Maßnahmen zur Wiedernutzbarmachung

**Anmerkung**
Achtung: Der Abschluss dieses Moduls schließt die Module “Nichtmetallische Mineralische Rohstoffe und Umwelt” (Wahl möglich ab WS 17/18) und “Geochemische Analytik und Prozesse” (Wahl möglich ab WS 18/19) aus, da ein Teil der Lehrveranstaltungen aus diesem Modul ebenfalls in den neuen Modulen vertreten sind (Doppelbelegung nicht möglich). Dieses Modul wird in dieser Form letztmals im SS 2018 angeboten.

**Arbeitsaufwand**
70 Stunden Präsenzzeit und 140 Stunden Eigenstudium
Modul: Hydrogeologie: Karst und Isotope [M-BGU-102440]

Verantwortung: Nico Goldscheider

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Pflicht

Bestandteil von: Geowissenschaftliche Kernkompetenzen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Kennung | Teilleistung | LP | Verantwortung
---|-------------|----|----------|
T-BGU-104758 | Hydrogeologie: Karst und Isotope (S. 94) | 5 | Nico Goldscheider

Erfolgskontrolle(n)
The Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung.

Voraussetzungen
keine

Qualifikationsziele
- Die Studierenden können die hydrogeologischen Eigenschaften von Karstsystem erklären und im Gelände erkennen.
- Sie sind in der Lage, relevante Untersuchungsmethoden der Karsthydrogeologie hinsichtlich Erkundung, Erschließung, Gefährdung und Schutz von Karstaquiferen anzuwenden.
- Sie können relevante Isotopenmethoden in der Hydrogeologie erläutern und anwenden.

Inhalt
- Geomorphologie und Hydrologie von Karstlandschaften
- Mineralogie, Stratigraphie und geologische Struktur von Karstsystemen
- Kalk-Kohlensäuregleichgewicht, Verkarstung und Speläogenese
- Grundwasserströmung in Karstaquiferen
- Modellieransätze in der Karst-Hydrogeologie
- Verletzlichkeit und Schadstofftransport im Karst
- Brunnen und Trinkwasserfassungen in Karstaquiferen
- Exkursion zur Karst-Hydrogeologie
- Isotopenmethoden in Theorie und Praxis

Arbeitsaufwand
60 Stunden Präsenzzeit und 90 Stunden Eigenstudium
Modul: Reservoir-Geology [M-BGU-103742]

Verantwortung: Christoph Hilgers

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Kernkompetenzen

Geowissenschaftliche Vertiefungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teillistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107563</td>
<td>Reservoir-Geology (S. 111)</td>
<td>5</td>
<td>Christoph Hilgers</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften unter Einbezug des Feldbuchs

Voraussetzungen

keine

Qualifikationsziele

After this course students are enabled to interpret fluid migration in porous and fractured rock in 3D sedimentary bodies over time, governing aspects from basin- and structural evolution to facies- and porosity-permeability development. They are enabled to map and characterize sedimentary rocks properties in the field including structural- and petrophysical aspects. They work in teams and critically evaluate own data with published literature.

Inhalt

Basins and reservoirs; methods: petrography, isotopy, microthermometry and cathodoluminescence; burial history and maturation; depositional settings and well correlations; structures; migration and traps; pore pressures, compaction and water saturation; diagenesis; reservoir characterization; reservoir quality prediction; plays and risks. Practical application of reservoir geology in a given field study area with special focus on structure, diagenesis and 3D geometries in sedimentary rocks

Anmerkung

Neben der LV Reservoir Geology 6310600 findet im Sommersemester noch die LV Field Seminar Reservoir Geology statt.

Literatur


Arbeitsaufwand

Summe: 5CP (150h)
Präsenzzeit: 30h
Geländezeit: 50h
Selbststudium: 70h
Modul: Sedimentpetrologie [M-BGU-103733]

Verantwortung: Armin Zeh

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Geowissenschaftliche Kernkompetenzen

Leistungspunkte | Turnus | Dauer | Sprache | Version
--- | --- | --- | --- | ---
5 | Jedes Wintersemester | 1 Semester | Deutsch | 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107558</td>
<td>Sedimentpetrologie (S. 112)</td>
<td>5</td>
<td>Armin Zeh</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung

Modulnote: Die Benotung beruht auf dem Resultat der schriftlichen Prüfung

Voraussetzungen

keine

Qualifikationsziele

- Die Studierenden sind in der Lage Sedimentgesteine zu klassifizieren.
- Sie können Mineralinhalte mittels verschiedener mineralogisch-geochemischer Methoden extrahieren, sowie den Mineralbestand und Strukturen qualitativ und quantitativ ermitteln (z.B. Mikroskopie, Magnetscheidung, Schwere- trennung, REM, sowie mineralogische Berechnungsmethoden).
- Sie sind in der Lage Bildungsbedingungen bei der Sedimententstehung und -veränderung zu erfassen, sowie unterschiedliche Altersinformation (z.B., Spaltspuren, C-14 Methode, U-Pb Methode) zu interpretieren.
- Sie sind ferner in der Lage Rückschlüsse über sedimentäre Ablagerungsräume und Herkunftsgebiete zu ziehen, und Aussagen zur Verwendung von Sedimentgesteinen zu treffen.

Inhalt


Empfehlungen

Kenntnisse zu Grundlagen in Petrologie, Mineralogie, Kristalloptik und (Isotopen)geochemie sind hilfreich.

Arbeitsaufwand

Summe: 5 LP (150h)
Präsenzzeit: 60h (2SWS Vorlesung, 2 SWS Übung, Schriftliche Prüfung: 120 min.)
Selbststudium: 90h
Modul: Geologische Gasspeicherung [M-BGU-102445]

Verantwortung: Frank Schilling

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Geowissenschaftliche Kernkompetenzen

Leistungspunkte: 5

Turnus: Jedes Sommersemester

Dauer: 1 Semester

Sprache: Deutsch

Version: 2

Pflichtbestandteile

Kennung Teilleistung LP Verantwortung
T-BGU-104841 Geologische Gasspeicherung (S. 84) 5 Frank Schilling

Erfolgskontrolle(n)

Voraussetzungen
keine

Qualifikationsziele
- Die Studierenden erlangen die Fähigkeit, grundlegende Prozesse im CO2-Haushalt der Erde zu erläutern und seine Auswirkungen auf das Klima zu charakterisieren.
- Auf dieser Basis können sie Fragen zur Speicherung von Gasen in Kavernen und Porenspeichern kritisch diskutieren.
- Sie verstehen die grundlegenden geomechanischen Prozesse in Georeservoiren, incl. Porendruck- und Spannungskopplung

Inhalt
- Grundlegende natürliche und anthropogene Prozesse des CO2-Haushaltes der Erde und ihre Auswirkungen auf das Klima
- Abtrennung CO2 aus technischen Prozessen (Präcombustion, Postcombustion, Oxyfuel)
- Alternative CO2-Reduktionstechnologien
- Geeignete geologische Strukturen zur Gas-Speicherung (salinare Aquifere, EOR, EGR, CBM, Kavernen)
- Rückhaltemechanismen im Reservoir für eine langzeitsichere Speicherung (structural trapping, solubility trapping, physical trapping, chemical trapping)
- Grundlegende Technologien zur Exploration, Speichererschließung & Überwachung
- Systematische Risikoanalyse
- Risk Assessment, Risk Management
- Kissengas
- Grundlagen der Reservoir Geomechanik
- Ursache und Erfassung tektonischer Spannungen
- Quellen von Poren(über)drücken
- Rolle der Permeabilität bei Druck und Fluidausbreitung
- Konzept kritisch gespannter Kruste
- Induzierte Seismizität bei Injektion und Förderung von Fluiden

Empfehlungen
The student shall have a basic knowledge of reservoir geology, mathematics and physics

Anmerkung
Ab WS 17/18 entfällt in diesem Modul die Geländeübung mit Studienleistung. Ersetzt wird sie ab SS 2018 mit der neuen
LV “Grundlagen der Reservoirgeomechanik”.

**Literatur**

**Arbeitsaufwand**
60h Präsenzzeit (4 SWS), 90h Eigenstudium
Modul: Nichtmetallische Mineralische Rohstoffe und Umwelt [M-BGU-103993]

Verantwortung: Jochen Kolb

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Geowissenschaftliche Kernkompetenzen

Bestandteil von: Geowissenschaftliche Kernkompetenzen

Leistungspunkte: 5

Turnus: Jedes Wintersemester

Dauer: 1 Semester

Sprache: Englisch

Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-108191</td>
<td>Industrial Minerals and Environment (S. 96)</td>
<td>5</td>
<td>Jochen Kolb</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer Prüfungsleistung anderer Art (Modulbericht).

Modulnote

Die Modulnote ist die Note der Prüfungsleistung anderer Art (benoteter Modulbericht).

Voraussetzungen

keine

Qualifikationsziele

- Die Studierenden können die Entstehungsprozesse nichtmetallischer mineralischer Ressourcen erklären und ihr Lagerstättenpotenzial beurteilen.
- Sie können Lagerstätten im Gelände geologisch beschreiben und potentielle Ressourcen im Gelände erkennen.
- Die Studierenden kennen die umweltrelevanten Risiken der Rohstoffgewinnung und ihrer Altlasten.

Inhalt

- Einführung in den Markt der nichtmetallischen mineralischen Rohstoffe.
- Fundamentale Prozesse der Lagerstättenbildung.
- Auswirkungen der Rohstoffgewinnung auf Hydrosphäre, Pedosphäre, Atmosphäre sowie Mensch und Gesellschaft.
- Beispielhafte Entwicklung von Strategien zur Minimierung von Umweltauswirkungen durch Rohstoffgewinnung und Maßnahmen zur Wiedernutzungsmachung.
- Geologische Beschreibung nichtmetallischer mineralischer Ressourcen im Gelände.

Anmerkung

Das Absolvieren dieses Moduls schließt das gleichzeitige Absolvieren des Moduls M-BGU-102435 “Mineralische Rohstoffe und Umwelt” aus, da die Lehrveranstaltung “Umweltaspekte der Mineralischen Rohstoffgewinnung” in beiden Modulen vorkommt.

Arbeitsaufwand

60 Stunden Präsenzzeit und 90 Stunden Eigenstudium
Modul: Ingenieurgeologie: Massenbewegungen und Modellierung [M-BGU-102442]

Verantwortung: Philipp Blum

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Kernkompetenzen
Geowissenschaftliche Vertiefungen

Leistungspunkte 5
Turnus Jedes Wintersemester
Dauer 2 Semester
Sprache Deutsch
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104836</td>
<td>Ingenieurgeologie: Massenbewegungen und Modellie-</td>
<td>5</td>
<td>Philipp Blum</td>
</tr>
<tr>
<td>rung (S. 98)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen keine

Qualifikationsziele
- Die Studierenden sind in der Lage, die Stabilität von Hängen und Böschungen zu beurteilen.
- Sie können relevante ingenieurgeologische Software sowie numerische Modelle anwenden.
- Im Rahmen eines Gutachtens veranschaulichen und erläutern sie Mess- und Auswertungsergebnisse.

Inhalt
Klassifizierung von Massenbewegungen; Ingenieurgeologische Erkundung; Ursachen, Prozesse und Maßnahmen bei Massenbewegungen; Durchführung einer kinematischen Analyse zum Erkennen von Bewegungsmechanismen; Quantitative analytische Berechnung von Hang- und Böschungsstabilitäten (Grenzgleichgewichtsmethode, factor of safety); Anwendung ingenieurgeologischer und geotechnischer Softwareprogramme zur Auswertung von Labor- und Feldversuchen und zur geotechnischen Berechnung; Anwendung numerischer Modelle ( Kontinuums- und Diskontinuumsmodelle); Simulation von gekoppelten thermisch-hydraulisch und mechanischen (THM) Prozessen in Geosystemen; Erstellung eines Gutachtens anhand von Fallbeispielen.

Arbeitsaufwand
60 Stunden Präsenzzeit und 90 Stunden Eigenstudium
3 Geowissenschaftliche Vertiefungen

**Modul: Hydrogeologie: Grundwassermodellierung [M-BGU-102439]**

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

**Pflichtbestandteile**

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104757</td>
<td>Hydrogeologie: Grundwassermodellierung (S. 93)</td>
<td>5</td>
<td>Tanja Liesch</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**


**Voraussetzungen**

keine

**Qualifikationsziele**

- Die Studierenden können Strömungs- und Transportvorgänge im Grundwasser quantitativ beschreiben.
- Sie können verschiedene numerische Methoden zur Grundwassermodellierung anwenden und sind in der Lage, einfache Anwendungsfälle selbständig zu lösen.

**Inhalt**

- Erstellung von konzeptionellen hydrogeologischen Modellen
- Grundlagen der Strömungsmodellierung: Strömungsgleichung
- Grundlagen der Transportmodellierung: Transportmechanismen, Lösung der Transportgleichung (Stofftransport und Wärmetransport)
- Aufbau eines numerischen Modells
- Inverse Modellierung und Kalibrierung
- Übungsaufgaben mit MODFLOW und FEFLOW

**Empfehlungen**

Pflichtmodul Hydrogeologie absolviert

**Anmerkung**

Aus organisatorischen Gründen muss die Teilnehmerzahl auf max. 20 beschränkt werden. Informationen zum Auswahlverfahren erfolgen per Aushang.

**Arbeitsaufwand**

50 Stunden Präsenzzeit und 100 Stunden Eigenstudium
Modul: Hydrogeologie: Karst und Isotope [M-BGU-102440]

Verantwortung: Nico Goldscheider

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Kernkompetenzen
Geowissenschaftliche Vertiefungen

Leistungspunkte Turnus Dauer Sprache Version

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104758</td>
<td>Hydrogeologie: Karst und Isotope (S. 94)</td>
<td>5</td>
<td>Nico Goldscheider</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine

Qualifikationsziele
- Die Studierenden können die hydrogeologischen Eigenschaften von Karstsystem erklären und im Gelände erkennen.
- Sie sind in der Lage, relevante Untersuchungsmethoden der Karsthydrogeologie hinsichtlich Erkundung, Erschließung, Gefährdung und Schutz von Karstaquiferen anzuwenden.
- Sie können relevante Isotopenmethoden in der Hydrogeologie erläutern und anwenden.

Inhalt
- Geomorphologie und Hydrologie von Karstlandschaften
- Mineralogie, Stratigraphie und geologische Struktur von Karstsystemen
- Kalk-Kohlen säuregleichgewicht, Verkarstung und Speläogenese
- Grundwasserströmung in Karstaquiferen
- Modellieransätze in der Karst-Hydrogeologie
- Verletzlichkeit und Schadstofftransport im Karst
- Brunnen und Trinkwasserfassungen in Karstaquiferen
- Exkursion zur Karst-Hydrogeologie
- Isotopenmethoden in Theorie und Praxis

Arbeitsaufwand
60 Stunden Präsenzzeit und 90 Stunden Eigenstudium
**Modul: Hydrogeologie: Gelände- und Labormethoden [M-BGU-102441]**

**Verantwortung:** Nadine Göppert

**Einrichtung:** KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

**Curriculare Verankerung:** Wahlpflicht

**Bestandteil von:** Geowissenschaftliche Vertiefungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

**Pflichtbestandteile**

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104834</td>
<td>Hydrogeologie: Gelände- und Labormethoden (S. 92)</td>
<td>5</td>
<td>Nadine Göppert</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**

Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer Prüfungsleistung anderer Art (Seminarvortrag und benoteter Bericht).

**Voraussetzungen**


**Qualifikationsziele**

- Die Studierenden können Grundwasserbeprobungen durchführen und Vor-Ort-Parameter bestimmen.
- Sie sind in der Lage, eine hydrochemische Vollanalyse durchzuführen.
- Sie können Markierungsversuche, Pumpversuche und weitere hydrogeologische Versuche planen, durchführen und auswerten.

**Inhalt**

- Planung und Durchführung von Grundwassermarkierungsversuchen
- Probennahme von Wasserproben
- Messung der Vor-Ort-Parameter
- Installation von Online-Messgeräten
- Schüttungsmessungen
- Durchführung und Auswertung eines Pumpversuchs
- Durchführung und Auswertung hydraulischer Tests
- Analytik von künstlichen Tracern
- Analytik von natürlichen Wasserinhaltsstoffen
- Grundlagen der Modellierung von Tracerdurchgangskurven

**Empfehlungen**

Pflichtmodul Hydrogeologie absolviert

**Anmerkung**

Aus organisatorischen Gründen muss die Teilnehmerzahl auf max. 20 beschränkt werden. Informationen zum Auswahlverfahren erfolgen per Aushang.

**Arbeitsaufwand**

45 Stunden Präsenzzeit und 105 Stunden Eigenstudium
Modul: Ingenieurgeologie: Massenbewegungen und Modellierung [M-BGU-102442]

Verantwortung: Philipp Blum
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Geowissenschaftliche Kernkompetenzen
Geowissenschaftliche Vertiefungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104836</td>
<td>Ingenieurgeologie: Massenbewegungen und Modellierung (S. 98)</td>
<td>5</td>
<td>Philipp Blum</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine

Qualifikationsziele
- Die Studierenden sind in der Lage, die Stabilität von Hängen und Böschungen zu beurteilen.
- Sie können relevante ingenieurgeologische Software sowie numerische Modelle anwenden.
- Im Rahmen eines Gutachtens veranschaulichen und erläutern sie Mess- und Auswertungsergebnisse.

Inhalt
Klassifizierung von Massenbewegungen; Ingenieurgeologische Erkundung; Ursachen, Prozesse und Maßnahmen bei Massenbewegungen; Durchführung einer kinematischen Analyse zum Erkennen von Bewegungsmechanismen; Quantitative analytische Berechnung von Hang- und Böschungsstabilitäten (Grenzgleichgewichtsmethode, factor of safety); Anwendung ingenieurgeologischer und geotechnischer Softwareprogramme zur Auswertung von Labor- und Feldversuchen und zur geotechnischen Berechnung; Anwendung numerischer Modelle (Kontinuums- und Diskontinuumsmodelle); Simulation von gekoppelten thermisch-hydraulisch und mechanischen (THM) Prozessen in Geosystemen; Erstellung eines Gutachtens anhand von Fallbeispielen.

Arbeitsaufwand
60 Stunden Präsenzzeit und 90 Stunden Eigenstudium
Modul: Angewandte Mineralogie: Petrophysik [M-BGU-102443]

Verantwortung: Frank Schilling

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Vertiefungen

Leistungspunkte: 5
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104838</td>
<td>Mineral- und Gesteinsphysik (S. 102)</td>
<td>5</td>
<td>Frank Schilling</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine

Qualifikationsziele

- Die Studierenden können mineral- und petrophysikalische Eigenschaften beurteilen und experimentelle und analytische Verfahren der Petrophysik anwenden.
- Sie sind in der Lage, geophysikalische Beobachtungen anhand mineral- und petrophysikalischer Eigenschaften einzuordnen.
- Sie sind in der Lage im Labor petrophysikalische Eigenschaften quantitativ zu bestimmen

Inhalt

- Elastische und inelastische Eigenschaften
- Experimentelle Methoden
- Untersuchungen bei höheren Temperaturen und Drücken
- Interpretation geophysikalischer Beobachtungen

Arbeitsaufwand
45 Stunden Präsenzzeit und 105 Stunden Eigenstudium
Modul: Angewandte Mineralogie: Tone und Tonminerale  [M-BGU-102444]

Verantwortung: Katja Emmerich

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Vertiefungen

Leistungspunkte  
Turnus  
Dauer  
Sprache  
Version

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104839</td>
<td>Tonmineralogie Einführung (S. 121)</td>
<td>3</td>
<td>Katja Emmerich</td>
</tr>
<tr>
<td>T-BGU-104840</td>
<td>Tonmineralogie Vertiefung (S. 122)</td>
<td>2</td>
<td>Katja Emmerich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)


Voraussetzungen

Keine

Qualifikationsziele

- Die Studierenden haben Kenntnis grundlegender Eigenschaften von Tonmineralen und Methoden ihrer Analyse.
- Sie können gängige tonmineralogische Analysetechniken anwenden.
- Sie können Prozesse und Prozessparameter in (geo-)technischen Systemen identifizieren und mit tonmineralogischen Materialeigenschaften in Zusammenhang bringen.

Inhalt

- Bausteine und Idealstruktur von 1:1 und 2:1 Schichtsilicaten, Arten von Tonen
- Realstruktur (Schichtladung, Polytopen, Wechsellagerungen) der Tonminerale
- Analytische Verfahren: Röntgenbeugung, Thermische Analyse (mit Beispielen zum Erlernen der Auswertung der Messkurven), Methoden zur Bestimmung der KAK und Schichtladung, Infrarotspektroskopie, Elektronenmikroskopie, Methoden zur Bestimmung von Oberflächen, Komplexe Phasenanalyse
- Materialeigenschaften und Prozessgrößen in technischen und geotechnischen Anwendungen von Tonen werden an Beispielen der aktuellen Forschung diskutiert
- Grundlegende analytische Methoden werden an realen Proben im Labor angewendet

Arbeitsaufwand

60 Stunden Präsenzzeit und 90 Stunden Eigenstudium
Modul: Geologische Gasspeicherung [M-BGU-102445]

Verantwortung: Frank Schilling
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Curriculare Verankerung: Geowissenschaftliche Kernkompetenzen, Geowissenschaftliche Vertiefungen

Leistungspunkte: 5
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Version: 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104841</td>
<td>Geologische Gasspeicherung (S. 84)</td>
<td>5</td>
<td>Frank Schilling</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)


Voraussetzungen

keine

Qualifikationsziele

- Die Studierenden erlangen die Fähigkeit, grundlegende Prozesse im CO2-Haushalt der Erde zu erläutern und seine Auswirkungen auf das Klima zu charakterisieren.
- Auf dieser Basis können sie Fragen zur Speicherung von Gasen in Kavernen und Porenspeichern kritisch diskutieren.
- Sie verstehen die grundlegenden geomechanischen Prozesse in Georeservoiren, incl. Porendruck- und Spannungskoppelung.

Inhalt

- Grundlegende natürliche und anthropogene Prozesse des CO2-Haushaltes der Erde und ihre Auswirkungen auf das Klima
- Abtrennung CO2 aus technischen Prozessen (Präcombustion, Postcombustion, Oxyfuel)
- Alternative CO2-Reduktionstechnologien
- Geeignete geologische Strukturen zur Gas-Speicherung (salinare Aquifere, EOR, EGR, CBM, Kavernen)
- Rückhaltemechanismen im Reservoir für eine langzeitsichere Speicherung (structural trapping, solubility trapping, physical trapping, chemical trapping)
- Grundlegende Technologien zur Exploration, Speichererschließung & Überwachung
- Systematische Risikoanalyse
- Risk Assessment, Risk Management
- Kissengas
- Grundlagen der Reservoir Geomechanik
- Ursache und Erfassung tektonischer Spannungen
- Quellen von Porendruck(über)drücken
- Rolle der Permeabilität bei Druck und Fluidausbreitung
- Konzept kritisch gespannter Kruste
- Induzierte Seismizität bei Injektion und Förderung von Fluiden

Empfehlungen

The student shall have a basic knowledge of reservoir geology, mathematics and physics

Anmerkung

Ab WS 17/18 entfällt in diesem Modul die Geländeübung mit Studienleistung. Ersetzt wird sie ab SS 2018 mit der neuen
LV “Grundlagen der Reservoirgeomechanik”.

**Literatur**

**Arbeitsaufwand**
60h Präsenzeit (4 SWS), 90h Eigenstudium
Modul: Geochemische Prospektion  [M-BGU-102446]

Verantwortung: Stefan Norra

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Vertiefungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104843</td>
<td>Geochemische Prospektion (S. 82)</td>
<td>5</td>
<td>Stefan Norra</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)


Voraussetzungen

keine

Qualifikationsziele

- Die Studierenden können die wichtigsten Erkundungsverfahren in der (umwelt-) geochemischen Prospektion erläutern.
- Sie können qualitative und quantitative Methoden der Prospektion und Exploration bzw. der umweltgeochemischen Erkundung sowie der Auswertung geochemischer Datensätze anwenden.

Inhalt

- Darstellung der Methoden und Techniken der Rohstoffsuche
- Verfahren zur quantitativen Datenerhebung bei der Untersuchung eines Rohstoffvorkommens (Bohrungen, Bohrlochlogging, Beprobung, Probenbehandlung; chemische, mineralogische und geotechnische Materialuntersuchung)
- Grundzüge der Vorratsberechnung und Bewertung einer mineralischen Ressource
- Grundzüge der Aufbereitung
- Konzeption einer geochemischen bzw. umweltgeochemischen Explorationskampagne, Probennahme im Feld
- Aufbereitung und Analyse der Prospektions- und Explorationsproben
- Auswertung und Bewertung der Ergebnisse mit multivariaten und geostatistischen Methoden

Empfehlungen

Geochemie Pflichtmodul absolviert

Anmerkung

Dieses Modul wird letztmals im SS 2018 angeboten

Arbeitsaufwand

50 Stunden Präsenzzeit und 100 Stunden Eigenstudium
Modul: Angewandte Geothermie [M-BGU-102447]

Verantwortung: Thomas Kohl
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Geowissenschaftliche Vertiefungen

Leistungspunkte: 5, Turnus: Jedes Sommersemester, Dauer: 1 Semester, Sprache: Deutsch/Englisch, Version: 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-108017</td>
<td>Geothermische Nutzung (S. 88)</td>
<td>4</td>
<td>Thomas Kohl</td>
</tr>
<tr>
<td>T-BGU-108018</td>
<td>Angewandte Geothermie - Exkursion (S. 70)</td>
<td>1</td>
<td>Thomas Kohl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung zu den Lehrveranstaltungen im Modul und nach § 4 Abs. 3 einer unbenoteten Studienleistung (Exkursionsteilnahme mit Bericht)

Voraussetzungen
keine

Qualifikationsziele
- Die Studierenden entwickeln Projekte mit Kostenschätzung für oberflächennahe und Tiefen-Geothermie.
- Sie können Beispiele und Fallstudien aus Theorie und Praxis erläutern.
EN:  
  - The students develop shallow and deep geothermal projects with cost estimates
  - The students are able to explicate examples and case studies in theory and practice

Inhalt
- Einführung geothermische Nutzung
- Hydrothermale/EGS Tiefengeothermie
- Stimulationsmethoden
- Exploration
- Thermodynamik/Kraftwerkprozesse
- Oberflächennahe Geothermie
- Anwendungsbeispiele
EN:
- Introduction into geothermal utilization
- Hydrothermal and enhanced (or engineered) geothermal systems (EGS)
- Stimulation methods
- Geothermal Exploration
- Thermodynamics and power plant processes
- Shallow geothermics
- Examples

Anmerkung
Das Datum der Exkursion sowie der Abgabetermin für den Exkursionsbericht werden zeitnah bekanntgegeben.
EN: The date for the excursion and the closing date for the excursion report will be promptly announced.

Arbeitsaufwand
30h Stunden Vorlesung, 2 Tage Exkursion (30h) und 90h Selbststudium
Modul: Themen der Geothermieforschung [M-BGU-102448]

Verantwortung: Thomas Kohl

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Vertiefungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104846</td>
<td>Spezialthemen der Angewandten Geothermie (S. 113)</td>
<td>3</td>
<td>Thomas Kohl</td>
</tr>
<tr>
<td>T-BGU-104847</td>
<td>Oberseminar Geothermie (S. 106)</td>
<td>2</td>
<td>Thomas Kohl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Modulnote
Die Gewichtung der Modulnote erfolgt nach Leistungspunkten

Voraussetzungen
keine

Qualifikationsziele
- Die Studierenden können geothermische Forschungsthemen nach eigenständiger Bearbeitung präsentieren.
- Sie sind in der Lage, praktische Anwendungsbeispiele mit Übungen aus Forschung, Entwicklung und Industrie anschaulich darzustellen.

EN:
- The students are able to present geothermal research topics based on their own work
- The students are able to clearly present examples with exercises from research, development, and industry

Inhalt
- Grundlagen
- Technologie
- Exploration
- Themen werden laufend ergänzt

EN:
- Basics
- Technology
- Exploration
- Topics are continuously supplemented

Anmerkung
EN: Presentation with written elaboration required

Arbeitsaufwand
50h Anwesenheit, 100h Eigenstudium
Modul: Bohrloch-Technologie [M-BGU-102449]

Verantwortung: Thomas Kohl
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Geowissenschaftliche Vertiefungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104851</td>
<td>Bohrloch-Technologie (S. 73)</td>
<td>5</td>
<td>Thomas Kohl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine

Qualifikationsziele
- Die Studierenden können Reservoire aus Logging Daten charakterisieren.
- Die Studierenden können die Grundlagen verschiedener Bohrloch-Technologien erläutern und sind in der Lage, Ergebnisse graphisch darzustellen, auszuwerten und wissenschaftlich zu präsentieren.
EN:
- The students are able to characterize reservoirs from logging data.
- The students are able to explain the basics of different drillhole technologies and are able to present results graphically and to evaluate and present them scientifically.

Inhalt
Logging (WS):
- Einführung Petrophysik, Parameter
- Verteilung von Fluid/Gesteinsparameter um ein Bohrloch
- Wireline Logging
- Archie Gesetz
- Aktive / Passive Logs (Widerstand, Induktion, Sonic, SP, nukleare Methoden, Abbildungsmethoden, ...)
- Anwendungsbeispiele

Drilling (SS):
- Aufbau Rig / Rotary Verfahren
- Spülungskreislauf
- Measurement while Drilling MWD
- Logging while Drilling LWD
- Well completion
- Anwendungsbeispiele
Die Veranstaltung Drilling enthält auch ein Seminar mit Präsentation und schriftlicher Ausarbeitung
EN:
- Introduction into petrophysics, parameter
- Distribution of fluid/rock parameter around a drillhole
- Wireline logging
GEOWISSENSCHAFTICHE VERTIEFUNGEN

- Archie’s law
- Active/passive logs (resistivity, induction, sonic, SP, nuclear methods, imaging)
- Examples of application

Driling
- Rig installation / rotary drilling method
- Drilling mud circulation
- Measurement while drilling (MWD)
- Logging while drilling (LWD)
- Well completion
- Examples of application
Modul: Structural Geology [M-BGU-102451]

Verantwortung: Agnes Kontny

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Vertiefungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

### Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107507</td>
<td>Microstructures (S. 101)</td>
<td>3</td>
<td>Agnes Kontny</td>
</tr>
<tr>
<td>T-BGU-107508</td>
<td>Field Course Applied Structural Geology (S. 81)</td>
<td>2</td>
<td>Agnes Kontny</td>
</tr>
</tbody>
</table>

### Erfolgskontrolle(n)

### Voraussetzungen
keine

### Qualifikationsziele
- Students will be trained in microstructural analysis in order to gain fundamental understanding of rock deformation
- Practical application of structural analysis in a given field study area.

### Inhalt
- Microstructures: Description and interpretation of small scale structures in deformed rocks: deformation mechanisms, foliation - lineation development, porphyroblast - porphyroclast, shear zone fabric
- Field course Applied Structural Geology: Description and interpretation of large scale structures in the field: Development of normal faults, folds, thrusts and unconformities and polyphase deformation in space and time

### Empfehlungen
Kenntnisse zu Grundlagen der Petrologie und Kristalloptik

### Literatur

### Arbeitsaufwand
30h Vorlesung, Vorbereitung auf Prüfung, 1 Woche Geländeübung sowie Präsentation und Bericht/Felddokumentation
Modul: Petrologie [M-BGU-102452]

Verantwortung: Kirsten Drüppel

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Vertiefungen

Leistungspunkte 5
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104854</td>
<td>Petrologie (S. 107)</td>
<td>5</td>
<td>Kirsten Drüppel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine

Qualifikationsziele
- Die Studierenden analysieren Mikrogefüge metamorpher und magmatischer Gesteine und leiten daraus deren Reaktionsgeschichte ab.
- Sie erlangen Kenntnis der gängigen petrologischen Analyseverfahren zur Gesteinsanalytik (Röntgenfluoreszenz- und Elektronenstrahlmikrosonden-Analytik).
- Sie können den Metamorphoseverlauf metamorpher Gesteine anhand von geothermobarometrischen Berechnungen, P-T-Phasendiagrammen und kalkulierten Pseudoschnitten interpretieren.
- Sie beherrschen die geochemische Protolith-Charakterisierung magmatischer und metamorpher Gesteine
- Sie können magmatischen und metamorphischen Gesteinsassoziationen im geodynamischen Kontext genetisch interpretieren.

Inhalt
- Probenahme nach mineralogisch-petrologischen Kriterien im Rahmen eines 3-tägigen Geländepraktikums
- Polarisationsmikroskopische Untersuchung der Gesteinsproben, insbesondere ihrer Mikroreaktionsgefüge
- Eigenständige geochemische und mineralchemische Analyse ausgewählter Proben und Auswertung der Analyseergebnisse
- Geochemische Charakterisierung der Proben, Berechnung geothermobarometrischer Daten
- Kalkulation und Interpretation von Pseudoschnitten

Arbeitsaufwand
90 Stunden Präsenzzeit und 60 Stunden Eigenstudium
Modul: Umweltgeologie: Radio- und chemotoxische Elemente  [M-BGU-102455]

Verantwortung: Frank Heberling

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Vertiefungen

Leistungspunkte 5  Turnus Jedes Wintersemester  Dauer 2 Semester  Sprache Deutsch  Version 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107560</td>
<td>Umweltgeologie: Radio- und chemotoxische Elemente (S. 124)</td>
<td>3</td>
<td>Frank Heberling</td>
</tr>
<tr>
<td>T-BGU-107623</td>
<td>Radiogeochemische Geländeübung und Seminar         (S. 109)</td>
<td>2</td>
<td>Frank Heberling</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung über die Vorlesung sowie einer Prüfungsleistung anderer Art, (Seminar als Vorbereitung zur Geländeübung und Bericht)

Modulnote
Die Bildung der Modulnote erfolgt durch gewichteten Durchschnitt nach Leistungspunkten

Voraussetzungen
Keine

Qualifikationsziele
- Die Studierenden erlangen ein vertieftes Verständnis der physikalisch-chemischen Grundlagen der Umweltgeologie.
- Sie verstehen die Zusammenhänge zwischen hydrogeochemischen Rahmenparametern und der Mobilität von radio- und chemotoxischen Schadstoffen in der Geosphäre und können diese erläutern
- Die Studierenden kennen und verstehen Abfallströme, Kategorien, Umweltgefährdungspotentiale und verschiedene Entsorgungsoptionen chemo- und radiotoxischer Abfälle.

Inhalt
- Dieses Modul soll Studierenden die theoretischen und praktischen Aspekte der Umweltgeologie vermitteln.
- Das Modul Umweltgeologie vermittelt einen interdisziplinären Überblick über den Schutz und die Nutzung natürlicher Ressourcen und den schonenden Umgang bei der Entsorgung toxischer und radiotoxischer Abfälle.
- Einleitend wird ein Überblick über wassergefährdende Stoffe und ihre toxische Wirkung mit besonderem Fokus auf radioaktive Substanzen und Strahlenschutzaspekte gegeben.
- Natürliche Radioisotope und ihre Verbreitung werden diskutiert.
- Das Verhalten radioaktiver Abfälle unter Endlagerbedingungen, Grundlagen zum chemischen Verhalten von Radionukliden und Grundlagen radiochemischer Analysenmethoden werden besprochen.
- Die Grundlagen des nuklearen Brennstoffkreislaufs sowie Abfallquellen schwach-, mittel- und hochradioaktiver Abfälle werden erläutert.
- Die Interaktion von Wasser und Wasserinhaltstoffen vor allem mit anorganischen Oberflächen (Boden und Gesteine) wird detailliert untersucht; wichtige Transportpfade und Rückhalteprozesse von Schadstoffen werden abgeleitet.
- Den Abschluss der Vorlesung bildet die Diskussion verschiedener Optionen zur Endlagerung radiotoxischer Abfälle.
- Das Seminar dient der Vorbereitung des Praktikums. Behandelt werden analytische Methoden, geowissenschaftliche- und chemische Grundlagen, sowie regionale Besonderheiten des Untersuchungsgebietes.
- Im Praktikum werden natürlich und anthropogen angereicherte Radioisotope und andere Schadstoffe im Gelände (und z.T im Labor) analysiert. Die Ergebnisse werden räumlich eingeordnet.
Empfehlungen
Kenntnisse zu Grundlagen der Geochemie, Hydrogeologie und Mineralogie sind hilfreich.

Anmerkung
Das Seminar und die Radiogeochemische Geländeübung finden als Blockkurs in der vorlesungsfreien Zeit statt.

Literatur

Arbeitsaufwand
Präsenzstudium 60h (2 SWS Vorlesung, 3-4 Tage Geländeübung und Seminar, schriftliche Prüfung 120 min), Eigenstudium 90h
Modul: Geowissenschaftliche Geländeübung / Exkursion [M-BGU-102456]

Verantwortung: Armin Zeh

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Vertiefungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104878</td>
<td>Geowissenschaftliche Geländeübung/Exkursion (S. 89)</td>
<td>5</td>
<td>Armin Zeh</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)


Voraussetzungen

Keine

Qualifikationsziele

- Die Studierenden können geowissenschaftliche Sachverhalte im Gelände erkennen, beschreiben und analysieren.
- Sie können Geländemethoden adequat auswählen und anwenden, sowie die Ergebnisse der jeweiligen Untersuchungen darstellen und beurteilen.

Inhalt

- Einführung in die Geologie des Arbeitsgebietes
- Erkennen von Gesteinen und ihre strukturelle Lagerung zur Bewertung von Georeservoiren und Georessourcen
### Modul: Sedimentpetrologie [M-BGU-103733]

**Verantwortung:** Armin Zeh  
**Einrichtung:** KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften  
**Curriculare Verankerung:** Wahlpflicht  
**Bestandteil von:** Geowissenschaftliche Kernkompetenzen, Geowissenschaftliche Vertiefungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107558</td>
<td>Sedimentpetrologie (S. 112)</td>
<td>5</td>
<td>Armin Zeh</td>
</tr>
</tbody>
</table>

#### Erfolgskontrolle(n)


#### Voraussetzungen

keine

#### Qualifikationsziele

- Die Studierenden sind in der Lage Sedimentgesteine zu klassifizieren.  
- Sie können Mineralinhalte mittels verschiedener mineralogisch-geochemischer Methoden extrahieren, sowie den Mineralbestand und Strukturen qualitativ und quantitativ ermitteln (z.B. Mikroskopie, Magnetscheidung, Schwere- trennung, REM, sowie mineralogische Berechnungsmethoden).  
- Sie sind in der Lage Bildungsbedingungen bei der Sedimententstehung und -veränderung zu erfassen, sowie unterschiedliche Altersinformation (z.B., Spaltspuren, C-14 Methode, U-Pb Methode) zu interpretieren.  
- Sie sind ferner in der Lage Rückschlüsse über sedimentäre Ablagerungsräume und Herkunftsgebiete zu ziehen, und Aussagen zur Verwendung von Sedimentgesteinen zu treffen.

#### Inhalt


#### Empfehlungen

Kenntnisse zu Grundlagen in Petrologie, Mineralogie, Kristalloptik und (Isotopen)geochemie sind hilfreich.

#### Arbeitsaufwand

Summe: 5 LP (150h)  
Präsenzzeit: 60h (2SWS Vorlesung, 2 SWS Übung, Schriftliche Prüfung: 120 min.)  
Selbststudium: 90h
**Modul: Diagenesis and Cores [M-BGU-103734]**

**Verantwortung:** Christoph Hilgers  
**Einrichtung:** KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften  
**Curriculare Verankerung:** Wahlpflicht  
**Bestandteil von:** Geowissenschaftliche Vertiefungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

**Pflichtbestandteile**

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107559</td>
<td>Diagenesis (S. 74)</td>
<td>3</td>
<td>Christoph Hilgers</td>
</tr>
<tr>
<td>T-BGU-107624</td>
<td>Reservoir-Analogs and Core Description (S. 110)</td>
<td>2</td>
<td>Christoph Hilgers</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**  

**Modulnote**  
Die Gewichtung zur Bildung der Modulnote erfolgt nach Leistungspunkten.

**Voraussetzungen**  
Modul Reservoir-Geology muss besucht worden sein.

**Qualifikationsziele**

- After this course students will be able to apply a workflow of petrographic analyses especially of sediments (description, quantification etc.), sandstone- and carbonate classification, provenance, evaluation of reservoir characteristics and diagenetic processes. They can critically assess data for sampling campaigns.

- After this course students are enabled to describe reservoir rocks in the field and in cores according to industry standards. They derive facies models and integrate data into state-of-the-art software.

**Inhalt**

- Petrography, rock typing and reservoir quality: granulometry, texture and fabric, porosity and porosity loss, primary and secondary porosity, compaction vs. cementation, identification of detrital grains, sandstone classification, intra- and extraclasts, provenance, authigenic mineralogy, quantification via estimation and point counting, sandstone diagenesis, paragenetic sequence and stages of diagenesis, diagenetic processes, geological control factors and burial history, structural diagenesis

- Description of reservoir- and source rocks as well as seals from analogs in the field and reservoir rocks from cores

**Empfehlungen**  
The student shall have a basic knowledge of reservoir geology

**Anmerkung**  
Für dieses Modul besteht Anwesenheitspflicht. Die bei dieser Veranstaltung vermittelten Inhalte können nicht im Wege eines Selbststudiums erschlossen werden.

**Literatur**  
Literatur LV Diagenesis:  
3 GEOWISSENSCHAFTISCHE VERTIEFUNGEN

Literatur LV Reservoir-analogs and core description:

Arbeitsaufwand
Summe: 5CP (150h)
Präsenzzeit: 60h
Selbststudium: 90h
Modul: Reservoir-Geology [M-BGU-103742]

Verantwortung: Christoph Hilgers

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Kernkompetenzen
Geowissenschaftliche Vertiefungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Kennung: T-BGU-107563
Teilleistung: Reservoir-Geology (S. 111)
Leistungspunkte: 5
Verantwortung: Christoph Hilgers

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften unter Einbezug des Feldbuchs

Voraussetzungen
keine

Qualifikationsziele
After this course students are enabled to interpret fluid migration in porous and fractured rock in 3D sedimentary bodies over time, governing aspects from basin- and structural evolution to facies- and porosity-permeability development. They are enabled to map and characterize sedimentary rocks properties in the field including structural- and petrophysical aspects. They work in teams and critically evaluate own data with published literature.

Inhalt
Basins and reservoirs; methods: petrography, isotopy, microthermometry and cathodoluminescence; burial history and maturation; depositional settings and well correlations; structures; migration and traps; pore pressures, compaction and water saturation; diagenesis; reservoir characterization; reservoir quality prediction; plays and risks. Practical application of reservoir geology in a given field study area with special focus on structure, diagenesis and 3D geometries in sedimentary rocks

Anmerkung
Neben der LV Reservoir Geology 6310600 findet im Sommersemester noch die LV Field Seminar Reservoir Geology statt.

Literatur

Arbeitsaufwand
Summe: 5CP (150h)
Präsenzzeit: 30h
Geländezeit: 50
Selbststudium: 70h
Modul: Mineralisch gebundene Werkstoffe im Bauwesen  [M-BGU-102453]

Verantwortung: Matthias Schwotzer
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Geowissenschaftliche Vertiefungen

Leistungspunkte: 5  
Turnus: Jedes Semester  
Dauer: 2 Semester  
Sprache: Deutsch  
Version: 1

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104856</td>
<td>Mineralisch gebundene Werkstoffe im Bauwesen</td>
<td>5</td>
<td>Matthias Schwotzer</td>
</tr>
<tr>
<td></td>
<td>(S. 103)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer mündlichen Prüfung

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung

Voraussetzungen
Keine

Qualifikationsziele
- Die Studierenden können die Zusammenhänge zwischen chemischer Zusammensetzung, Mineralogie und den Eigenschaften mineralisch gebundener Werkstoffe im Bauwesen einordnen.
- Sie haben Kenntnisse mineralogischer, baustofftechnologischer und analytischer Methoden und können Konzepte und Zusammenhänge erklären.
- Sie können chemische, physikalische und materialtechnische Prüfverfahren erläutern und ihre Einsatzmöglichkeiten zuordnen.
- Die Studierenden können Schädigungen mineralischer Werkstoffe erkennen und analysieren und haben Kenntnisse von Mineralogie und Gefüge mineralischer Werkstoffe des Bauwesens sowie werkstoffschädigender chemischmineralogischer Reaktionen.
- Sie können Beispiele aus der Praxis interpretieren und analytische Konzepte zur Aufklärung der Ursachen werkstoffschädigender Reaktionen ableiten.
- Sie erkennen Zusammenhänge zwischen Nutzungsbedingungen und Werkstoffeigenschaften im Hinblick auf die Dauerhaftigkeit der Werkstoffe.
- Sie können Anforderungsprofile als Basis für Konzepte zur Schadensvermeidung bzw. Werkstoffentwicklung ableiten.
- Des Weiteren können sie Möglichkeiten zur chemischen Funktionalisierung mineralischer Werkstoffe zur Steigerung der Widerstandsfähigkeit in aggressiven Milieus.

Inhalt
- Chemie und Mineralogie während der gesamten Prozesskette mineralischer Bindemittel vom Rohstoff, über Herstellung und Verarbeitung
- natürliche Ausgangsstoffe von Zement und anderen Bindemitteln
- Herstellungsprozesse, Produktvariation
- Verarbeitungsprozesse, Anwendungsbeispiele und -probleme
- Laborsimulationen und -versuche zu Herstellung und Abbindeverhalten von Bindemitteln
- Werkstoffschädigende Reaktionen und Schadensbilder
- Analytische Methoden zur Untersuchung mineralischer Werkstoffe des Bauwesens (Labor- und Feldmethoden)
GEOWISSENSCHAFTICHE VERTIEFUNGEN

- Anforderungsprofile an mineralisch gebundene Werkstoffe in aggressiven Milieus
- Grundlagen zur Funktionalisierung mineralischer Werkstoffe - Chemie mineralischer Grenzflächen

**Arbeitsaufwand**
60 Stunden Präsenzzeit und 90 Stunden Eigenstudium
Modul: Nichtmetallische Mineralische Rohstoffe und Umwelt  [M-BGU-103993]

Verantwortung: Jochen Kolb

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Geowissenschaftliche Kernkompetenzen
Geowissenschaftliche Vertiefungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-108191</td>
<td>Industrial Minerals and Environment (S. 96) 5</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer Prüfungsleistung anderer Art (Modulbericht).

Modulnote

Die Modulnote ist die Note der Prüfungsleistung anderer Art (benoteter Modulbericht).

Voraussetzungen

keine

Qualifikationsziele

- Die Studierenden können die Entstehungsprozesse nichtmetallischer mineralischer Ressourcen erklären und ihr Lagerstättenpotenzial beurteilen.
- Sie können Lagerstätten im Gelände geologisch beschreiben und potentielle Ressourcen im Gelände erkennen.
- Die Studierenden kennen die umweltrelevanten Risiken der Rohstoffgewinnung und ihrer Altlasten.

Inhalt

- Einführung in den Markt der nichtmetallischen mineralischen Rohstoffe.
- Fundamentale Prozesse der Lagerstättenbildung.
- Auswirkungen der Rohstoffgewinnung auf Hydrosphäre, Pedosphäre, Atmosphäre sowie Mensch und Gesellschaft.
- Beispielhafte Entwicklung von Strategien zur Minimierung von Umweltauswirkungen durch Rohstoffgewinnung und Maßnahmen zur Wiedernutzungsbarmachung.
- Geologische Beschreibung nichtmetallischer mineralischer Ressourcen im Gelände.

Anmerkung

Das Absolvieren dieses Moduls schließt das gleichzeitige Absolvieren des Moduls M-BGU-102435 “Mineralische Rohstoffe und Umwelt” aus, da die Lehrveranstaltung "Umweltaspekte der Mineralischen Rohstoffgewinnung“ in beiden Modulen vorkommt.

Arbeitsaufwand

60 Stunden Präsenzzeit und 90 Stunden Eigenstudium
4 Fachbezogene Ergänzung

Modul: Theoretische Bodenmechanik (bauiM5P1-THEOBM) [M-BGU-100067]

Verantwortung: Theodoros Triantafyllidis

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Fachbezogene Ergänzung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Kennung | Teilleistung | LP | Verantwortung
---|---|---|---
T-BGU-100067 | Theoretische Bodenmechanik (S. 120) | 6 | Theodoros Triantafyllidis

Erfolgskontrolle(n)
- Teilleistung T-BGU-100067 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 der SPO 2016 M.Sc. Angewandte Geowissenschaften
Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Qualifikationsziele

Inhalt
vertiefte theoretische Grundlagen des Bodenverhaltens:
- geotechnische Invarianten der Spannung und Dehnung
- Festigkeitskriterien nach Coulomb, Matsuoka-Nakai etc.
- Kontraktanz und Dilatanz
- kritische Dichte
- Festigkeitskriterium von Krey-Tiedemann
- Bodenverhalten bei Teilsättigung
- Kollapstheoreme und ihre Anwendung (Kinematische-Element-Methode)
- Elastizität in der Bodenmechanik (isotrop und anisotrop)
- akustischer Tensor
- Elastoplastizität mit volumetrischer Verfestigung am Beispiel des Cam-Clay-Modells
- Bodenverhalten bei zyklischer Belastung
- eindimensionale Viskoplastizität

Empfehlungen
Modul “Grundlagen numerischer Modellierung”

Anmerkung
keine
Literatur
Niemunis (2009): Über die Anwendung der Kontinuumstheorie auf bodenmechanische Probleme (download)

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung/Übung: 60 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesung/Übungen: 30 Std.
- Arbeiten mit zur Verfügung gestellten Programmen: 30 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.
Modul: Erd- und Grundbau (bauM5P2-ERDGB) [M-BGU-100068]

Verantwortung: Theodoros Triantafyllidis

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Fachbezogene Ergänzung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100068</td>
<td>Erd- und Grundbau (S. 77)</td>
<td>6</td>
<td>Theodoros Triantafyllidis</td>
</tr>
<tr>
<td>T-BGU-100178</td>
<td>Studienarbeit “Erd- und Grundbau” (S. 117)</td>
<td>0</td>
<td>Theodoros Triantafyllidis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Teilleistung T-BGU-100178 mit einer unbenoteten Studienleistung nach § 4 Abs. 3 der SPO 2016 M.Sc. Angewandte Geowissenschaften
- Teilleistung T-BGU-100068 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 der SPO 2016 M.Sc. Angewandte Geowissenschaften

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Modulnote

Modulnote ist Note der Prüfung

Voraussetzungen

keine

Qualifikationsziele


Inhalt


Empfehlungen

Grundkenntnisse in Bodenmechanik und Grundbau;
Bearbeitung und Abgabe der Studienarbeit als Prüfungsvorbereitung bis zum Prüfungstermin

Anmerkung

keine

Literatur

[1] Witt. K.J. (2008), Grundbau-Taschenbuch, Teil 1,
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Gründungsvarianten Vorlesung/Übung: 30 Std.
- Grundlagen des Erd- und Dammbaus Vorlesung/Übung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen Gründungsvarianten: 10 Std.
- Vor- und Nachbereitung Vorlesung/Übungen Grundlagen des Erd- und Dammbaus: 10 Std.
- Anfertigen der Studienarbeit: 60 Std.
- Prüfungsvorbereitung: 40 Std.

Summe: 180 Std.

**Modul: Felsmechanik und Tunnelbau (bauiM5P3-FMTUB) [M-BGU-100069]**

**Verantwortung:** Theodoros Triantafyllidis

**Einrichtung:** KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

**Curriculare Verankerung:** Wahlpflicht

**Bestandteil von:** Fachbezogene Ergänzung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

**Pflichtbestandteile**

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100069</td>
<td>Felsmechanik und Tunnelbau (S. 80)</td>
<td>6</td>
<td>Carlos Grandas Tavera, Theodoros Triantafyllidis</td>
</tr>
<tr>
<td>T-BGU-100179</td>
<td>Studienarbeit &quot;Felsmechanik und Tunnelbau&quot; (S. 119)</td>
<td>0</td>
<td>Carlos Grandas Tavera, Theodoros Triantafyllidis</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**
- Teilleistung T-BGU-100179 mit einer unbenoteten Studienleistung nach § 4 Abs. 3 der SPO 2016 M.Sc. Angewandte Geowissenschaften
- Teilleistung T-BGU-100069 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 der SPO 2016 M.Sc. Angewandte Geowissenschaften

**Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung**

**Modulnote**
Modulnote ist Note der Prüfung

**Voraussetzungen**
keine

**Qualifikationsziele**
Die Studierenden verstehen die wesentlichen Festigkeits- und Verformungseigenschaften von Fels und beherrschen die grundlegenden analytischen Verfahren zur Lösung von Randwertproblemen des über- und untertägigen Felsbaus. Sie können grundlegende Bauverfahren und Konstruktionen im bergmännischen Tunnelbau auswählen und die felsmechanischen Methoden und statischen Nachweise selbständig anwenden. Im Blick auf Variantenabwägung, Kosten, Baubetrieb und Sicherheitsaspekte haben für das gesamte Bauen im Festgestein geotechnische Problemlösungskompetenz erworben.

**Inhalt**

Angewandte Geowissenschaften Master
Modulhandbuch mit Stand 26.06.2018 für Sommersemester 2018

55
Empfehlungen
Grundkenntnisse in Ingenieurgeologie; Bearbeitung und Abgabe der Studienarbeit als Prüfungsvorbereitung bis zum Prüfungstermin

Anmerkung
keine

Literatur
[8] Müller, L. 1978: Der Felsbau, Bd. 3 Tunnelbau

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Grundlagen der Felsmechanik Vorlesung/Übung: 30 Std.
- Grundlagen des Tunnelbaus Vorlesung/Übung: 30 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesung/Übungen Grundlagen der Felsmechanik: 20 Std.
- Vor- und Nachbereitung Vorlesung/Übungen Grundlagen des Tunnelbaus: 20 Std.
- Anfertigen der Studienarbeit: 20 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.
**Modul: Umweltgeotechnik (bauIM5S09-UMGEOTEC) [M-BGU-100079]**

**Verantwortung:** Theodoros Triantafyllidis

**Einrichtung:** KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

**Curriculare Verankerung:** Wahlpflicht

**Bestandteil von:** Fachbezogene Ergänzung

**Leistungspunkte**

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

**Pflichtbestandteile**

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100084</td>
<td>Übertagedeponien (S. 123)</td>
<td>3</td>
<td>Andreas Bieberstein</td>
</tr>
<tr>
<td>T-BGU-100089</td>
<td>Altlasten - Untersuchung, Bewertung und Sanierung (S. 69)</td>
<td>3</td>
<td>Andreas Bieberstein</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**

- Teilleistung T-BGU-100084 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 der SPO 2016 M.Sc. Angewandte Geowissenschaften
- Teilleistung T-BGU-100089 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 der SPO 2016 M.Sc. Angewandte Geowissenschaften

**Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung**

**Modulnote**
Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

**Voraussetzungen**
keine

**Qualifikationsziele**

**Inhalt**

**Empfehlungen**
keine

**Anmerkung**
keine

**Literatur**
DGGT, GDA-Empfehlungen – Geotechnik der Deponien und Altlasten, Ernst und Sohn, Berlin
Drescher (1997), Deponiebau, Ernst und Sohn, Berlin
Reiersloh, D und Reinhard, M. (2010): Altlastenratgeber für die Praxis, Vulkan-V. Essen

**Arbeitsaufwand**

**Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):**

- Übertagedeponien Vorlesung/Übung: 30 Std.
- Altlasten - Untersuchung, Bewertung und Sanierung Vorlesung: 30 Std.
- Exkursionen: 10 Std.

**Selbststudium:**

- Vor- und Nachbereitung Vorlesung/Übungen Übertagedeponien: 25 Std.
- Prüfungsvorbereitung Übertagedeponien (Teilprüfung): 30 Std.
- Vor- und Nachbereitung Vorlesungen Altlasten - Untersuchung, Bewertung und Sanierung: 25 Std.
- Prüfungsvorbereitung Altlasten - Untersuchung, Bewertung und Sanierung (Teilprüfung): 30 Std.

Summe: 180 Std.
**Modul: Elektronenmikroskopie I [M-PHYS-103760]**

**Verantwortung:** Dagmar Gerthsen

**Einrichtung:** KIT-Fakultät für Physik

**Curriculare Verankerung:** Wahlpflicht

**Bestandteil von:** Fachbezogene Ergänzung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

**Pflichtbestandteile**

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-107599</td>
<td>Elektronenmikroskopie I (S. 75)</td>
<td>5</td>
<td>Dagmar Gerthsen</td>
</tr>
</tbody>
</table>

**Modulnote**

Die Note setzt sich zusammen aus mündlicher Prüfung und Praktikumsprotokoll.

**Voraussetzungen**

keine, die Vorlesungen Elektronenmikroskopie I und II sind unabhängig voneinander

**Qualifikationsziele**

Aus Analogien zur Lichtmikroskopie sollen die Studierenden Parallelen und Unterschiede zwischen Lichtmikroskopie und Transmissionselektroonmikroskopie (TEM) sowie die Bildentstehung im Transmissionelektroonmikroskop verstehen. Die Studierenden können die Wechselwirkung zwischen hochenergetischen Elektronen und Festkörpern beschreiben und erklären (kinematische Beugungstheorie und deren Grenzen bei der Wechselwirkung zwischen Elektronen und Festkörper, dynamische Beugungstheorie). Anhand theoretischer Konzepte für die dynamische Elektronenbeugung und den Abbildungsprozess sollen TEM Abbildungen interpretiert werden (Welche Kontraste entstehen für perfekte Festkörper und Defekte in Festkörpern?). Durch Anwendungsbeispiele aus der Festkörperphysik und Materialforschung sollen die Studierenden die Einsatzmöglichkeiten und Grenzen der TEM kennenlernen und verstehen.

In den praktischen Übungen werden die theoretischen Konzepte aus der Vorlesung sowie TEM Abbildungsmodi durch Arbeit in kleinen Gruppen visualisiert, geübt und vertieft.

**Inhalt**

Transmissionelektroonmikroskopie (TEM), hochauflösende TEM, Raster-Transmissionselektroonmikroskopie, kinematische und dynamische Elektronenbeugung im Festkörper, TEM Kontrastentstehung mit Anwendungsbeispielen aus der Material- und Festkörperphysik, Elektronenholographie, Transmissionselektroonmikroskopie mit Phasenplatten

**Empfehlungen**

Grundkenntnisse Optik, Festkörperphysik, Materialphysik oder Werkstoffkunde, Quantenmechanik

**Literatur**


L. Reimer, H. Kohl, Transmission Electron Microscopy, Springer Verlag

**Arbeitsaufwand**

150 h bestehend aus Präsenzzeiten: insgesamt 52 h, davon 28 h für Vorlesung (14 Wochen * 2 SWS) und 24 h für die Praktikumsversuche. Die restlichen Stunden dienen der Vorbereitung auf die Versuche, Anfertigung von Praktikumsprotokollen, Nachbereitung des Vorlesungsstoffes und Vorbereitung auf die Prüfung.
Modul: Elektronenmikroskopie II [M-PHYS-103761]

Verantwortung: Dagmar Gerthsen

Einrichtung: KIT-Fakultät für Physik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Fachbezogene Ergänzung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-107600</td>
<td>Elektronenmikroskopie II (S. 76)</td>
<td>5</td>
<td>Dagmar Gerthsen</td>
</tr>
</tbody>
</table>

Modulnote
Die Note setzt sich zusammen aus mündlicher Prüfung und Praktikumsprotokoll.

Voraussetzungen
keine

Qualifikationsziele


Inhalt
Rasterelektronenmikroskopie, Abbildung und Strukturierung mit fokussierten Ionenstrahlen, analytische Verfahren in der Elektronenmikroskopie (energiedispersive Röntgenspektroskopie und Elektronenergieverlustspektroskopie)

Empfehlungen
Grundkenntnisse Optik, Festkörperphysik, Materialphysik, Werkstoffkunde und Quantenmechanik

Literatur
Wird in der Vorlesung genannt.

Arbeitsaufwand
150 Stunden: Präsenzzeiten 54 Stunden, davon 30 Stunden für die Vorlesung und 24 Stunden für die Praktikumsversuche. Die restlichen Stunden dienen der Vorbereitung auf die Versuche, Anfertigung von Praktikumsprotokollen, Nachbereitung des Vorlesungsstoffes und der Vorbereitung auf die Prüfung.
Modul: Wasserchemie und Wassertechnologie  [M-CIWVT-103753]

Verantwortung: Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Fachbezogene Ergänzung

Leistungspunkte: 10
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-107585</td>
<td>Wasserkemie und Wassertechnologie (S. 125)</td>
<td>10</td>
<td>Harald Horn</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)


Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

- Äußer den Fragen zur chemischen und biologischen Gewässerqualität, stehen für die Studierenden auch technische Aspekte der Wassernutzung, -aufbereitung und -technologie im Mittelpunkt.

Inhalt

Chemische und physikalische Eigenschaften des Wassers, Wasserkreislauf und Inhaltsstoffe, Kalk-Kohlensäure-Gleichgewicht, Sättigungsindex, Grundwasser, Oberflächenwasser, Umsetzungen, Trinkwasser, Grundlagen der Wasserbeurteilung, analytische Verfahren zur Wasseruntersuchung, wassertechnologische und wasserchemische Verfahren (Flockung, Fällung, Enteisenung, Entmanganung, Adsorption und Ionenaustausch, Gas austausch, Entfärbung und/or Entkarbonisierung, Oxidation und Entkeimung), Übungen

Empfehlungen

Keine

Literatur

- Crittenden et al. (2005): Water Treatment, Principles and design. Wiley & Sons
- Vorlesungsskripte

Arbeitsaufwand

75 Stunden Präsenzzeit und 225 Stunden Eigenstudium
M  Modul: Grundwasser und Dammbau (bauiM5S04-GWDAMM) [M-BGU-100073]

Verantwortung: Theodoros Triantafyllidis

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Fachbezogene Ergänzung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100091</td>
<td>Grundwasser und Dammbau (S. 91)</td>
<td>6</td>
<td>Andreas Bieberstein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-100091 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden können Ihre vertieften Kenntnisse zu unterschiedlichen Fragestellungen geotechnischer Grundwasserprobleme wiedergeben. Sie können Wasserhaltungen unter unterschiedlichsten Randbedingungen dimensionieren sowie geohydraulische Zusammenhänge an Beispielrechnungen beurteilen und demonstrieren. Sie sind in der Lage, für dammbautypische Problemstellungen eigene Lösungsansätze zu entwickeln, Bauverfahren zu beurteilen und die geforderten geotechnischen Nachweise zu führen.

Inhalt

Empfehlungen
Modul “Erd- und Grundbau”

Anmerkung
keine

Literatur

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Geotechnische Grundwasserprobleme Vorlesung/Übung: 30 Std.
- Erddammbau Vorlesung/Übung: 30 Std.
- Exkursionen: 10 Std.
Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen Geotechnische Grundwasserprobleme: 25 Std.
- Vor- und Nachbereitung Vorlesung/Übungen Erddammbau: 25 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.
Modul: Geotechnisches Ingenieurwesen (bauiBFP7-GEOING) [M-BGU-103698]

Verantwortung: Theodoros Triantafyllidis

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Fachbezogene Ergänzung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Jedes Sommersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

**Pflichtbestandteile**

Kennenng | Teilleistung | LP | Verantwortung |
---|---|---|---|
T-BGU-107465 | Geotechnisches Ingenieurwesen (S. 85) | 11 | Theodoros Triantafyllidis |

**Erfolgskontrolle(n)**

- Teilleistung T-BGU-107465 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung.

**Modulnote**

Modulnote ist Note der Prüfung

**Voraussetzungen**

keine

**Qualifikationsziele**


Aufgrund ihrer Kenntnis gebräuchlicher geotechnischer Bauweisen können sie für Standardaufgaben wie Gebäudegrundungen, Baugrubenverbauten und Tunnel an die jeweiligen Baugrund- und Grundwasserverhältnisse angepasste geotechnische Konstruktionen eigenständig auswählen, bemessen und deren Bauablauf beschreiben. Sie sind weiter in der Lage, für diese geotechnischen Konstruktionen sowie für natürliche Böschungen Standsicherheits- und Gebrauchstauglichkeitsuntersuchungen selbständig durchzuführen und die Ergebnisse kritisch zu bewerten.

**Inhalt**

Das Modul vermittelt theoretisches Grundwissen zum Bodenverhalten und demonstriert dessen praktische Anwendung bei der Bemessung der gängigsten geotechnischen Konstruktionen. Behandelt werden:

- Normen, Richtlinien und Sicherheitsnachweise im Erd- und Grundbau
- Baugrundkundung, Bodenklassifizierung, Bodeneigenschaften und Bodenkenngrößen
- Durchlässigkeit, Sickerströmung und Grundwasserhaltungen
- Spannungsausbreitung im Baugrund, Kompressionsverhalten und Konsolidierung
- Scherfestigkeit der Erdstoffe, Standsicherheit von Böschungen und Gründungen
- Bemessung und Setzungsberechnung von Flachgründungen
- Erddruck und Erdwiderstand, Bemessung von Stützbauwerken und Baugrubenverbauten
- Pfahlgründungen, Tiefgründungen und Gründungen im offenen Wasser
- Verfahren zur Baugrundverbesserung
- Einführung in den bergmännischen Tunnelbau

**Empfehlungen**


Der Besuch der vorlesungsbegleitenden Tutorien (6200417, 6200517) wird empfohlen. Ebenso wird die eigenständige Nachbereitung und für die Pürfungsvorbereitung die Bearbeitung einer freiwilligen Studienarbeiten unbedingt empfohlen.
Anmerkung
Vorlesungsbegleitend werden Tutorien (6200417 + 6200418) angeboten, deren Besuch empfohlen wird. Die Vor- und Nachbereitung in Eigenregie kann in Form einer freiwilligen Studienarbeit erfolgen.

Literatur
Triantafyllidis, Th. (2014): Arbeitsblätter und Übungsblätter Bodenmechanik
Triantafyllidis, Th. (2011): Arbeitsblätter und Übungsblätter Grundbau
Gudehus, G (1981): Bodenmechanik, F. Enke

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Grundlagen der Bodenmechanik Vorlesung, Übung, Tutorium: 90 Std.
- Grundlagen des Grundbaus Vorlesung, Übung, Tutorium: 90 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung, Übung Grundlagen der Bodenmechanik: 30 Std.
- Vor- und Nachbereitung Vorlesung, Übung Grundlagen des Grundbaus: 30 Std.
- Prüfungsvorbereitung: 90 Std.

Summe: 330 Std.
Modul: Water Technology  [M-CIWVT-103407]

Verantwortung: Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Fachbezogene Ergänzung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106802</td>
<td>Water Technology (S. 126)</td>
<td>6</td>
<td>Harald Horn</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung,
Dauer: 30 min, gemäß SPO § 4 Abs. 2 Nr. 2.

Voraussetzungen
keine

Qualifikationsziele

Inhalt

Literatur
Crittenden et al. (2005): Water Treatment, Principles and design. Wiley & Sons, Hoboken
Lecture notes will be provided in ILIAS

Arbeitsaufwand
Präsenzzeit: 45 h
Vor-/Nachbereitung: 60 h
Prüfung + Prüfungsvorbereitung: 75 h
Modul: Stadtökologie (E13) [M-BGU-101568]

Verantwortung: Stefan Norra

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Fachbezogene Ergänzung

Leistungspunkte: 12

Turnus: Jedes Semester

Dauer: 2 Semester

Sprache: Deutsch

Version: 3

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103001</td>
<td>Stadtökologie (S. 114)</td>
<td>3</td>
<td>Stefan Norra</td>
</tr>
<tr>
<td>T-BGU-106684</td>
<td>Stadtökologie Vorlesung (S. 116)</td>
<td>3</td>
<td>Stefan Norra</td>
</tr>
<tr>
<td>T-BGU-106685</td>
<td>Stadtökologie Praktikum (S. 115)</td>
<td>6</td>
<td>Stefan Norra</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-103001 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO 2015 Master Geoökologie
- Teilleistung T-BGU-106685 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO 2015 Master Geoökologie
- Teilleistung T-BGU-106684 mit einer Studienleistung nach § 4 Abs. 3 SPO 2015 Master Geoökologie

Einzelheiten zu den einzelnen Erfolgskontrollen siehe bei den jeweiligen Teilleistungen.

Modulnote
Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- kennen die Grundlagen der Stadtökologie.
- erkennen die interdisziplinären Zusammenhänge der städtischen Ökosystemkomplexe.
- können stadtökologische Analysen durchführen.
- können eigenständig Lösungsansätze für stadtökologische Probleme erarbeiten.
- können Richtlinien für eine ökologisch orientierte Stadtplanung und -entwicklung entwerfen.
- sind in der Lage ökologische Problemfelder urbaner Räume zu erkennen und zu bewerten.
- können stadtökologische Themenfelder kommunizieren.

Inhalt

Empfehlungen
Es wird empfohlen das Modul mit dem Praktikum und der Vorlesung im Sommersemester zu beginnen und mit dem Seminar abzuschließen.

Anmerkung
Keine
Arbeitsaufwand
1. Präsenzzeit in Vorlesung, Seminar und Praktikum: 90 h
2. Vor-/Nachbereitung derselbigen: 150 h
3. Prüfungsleistung anderer Art: 120 h
Teil II
Teilleistungen

---

Teilleistung: Altlasten - Untersuchung, Bewertung und Sanierung [T-BGU-100089]

Verantwortung: Andreas Bieberstein
Bestandteil von: [M-BGU-100079] Umweltgeotechnik

Leistungspunkte: 3
Turnus: Jedes Wintersemester
Prüfungsform: Prüfungsleistung mündlich
Version: 1

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6251915</td>
<td>Altlasten - Untersuchung, Bewertung und Sanierung</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Bieberstein, Ulf Mohrlok, Thomas Neumann, Hilke Würdemann</td>
</tr>
</tbody>
</table>

### Erfolgskontrolle(n)

mündliche Prüfung, ca. 20 min.

### Voraussetzungen

keine

### Empfehlungen

keine

### Anmerkung

keine

---

V Auszug aus der Veranstaltung: Altlasten - Untersuchung, Bewertung und Sanierung (WS 17/18)

Lernziel

Die Studierenden sind in der Lage, chemische, mineralogische, biologische, hydraulische und geotechnische Aspekte bei der Altlastenbehandlung interdisziplinär zu vernetzen. Sie können zwischen den einschlägigen Sanierungsverfahren begründet auswählen und deren Anwendungsgrenzen und Risiken abschätzen.

Inhalt

- Schadstoffe und Schadstoffverhalten in der Umwelt
- Umwelchemische und mineralogische Aspekte bei der Schadstoffakkumulation im Boden
- Natural Attenuation und aktive mikrobiologische Sanierungsverfahren
- Reaktive Wände und elektrokinetische Sanierungsverfahren
- Bodenwäsche, Verbrennung, Pyrolyse
- Immobilisierung und Verfestigung, Geotechnische Aspekte bei der Einkapselung von Industriemülldeponien
- Hydraulische und pneumatische Sanierungsverfahren
- Nachhaltigkeit bei der Altlastensanierung
- Fallbeispiele aus der Praxis, Exkursion.

Literatur

Reiersloh, D und Reinhard, M. (2010): Altlastenratgeber für die Praxis, Vulkan-V. Essen
Teilleistung: Angewandte Geothermie - Exkursion [T-BGU-108018]

Verantwortung: Thomas Kohl
Bestandteil von: [M-BGU-102447] Angewandte Geothermie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jedes Sommersemester</td>
<td>Studienleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6310427</td>
<td>Exkursion zu Geothermische Nutzung (2 Tage)</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Thomas Kohl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle in dieser Teilleistung erfolgt nach § 4 Abs. 3 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer Studienleistung (siehe Modulbeschreibung).

Voraussetzungen
keine

Anmerkung
Das Datum der Exkursion sowie der Abgabetermin für den Exkursionsbericht werden zeitnah bekanntgegeben.
Teilleistung: Angewandte Mineralogie: Geomaterialien [T-BGU-104811]

Verantwortung: Frank Schilling
Bestandteil von: [M-BGU-102430] Angewandte Mineralogie: Geomaterialien

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Prüfungskriterium</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339079</td>
<td>Analytische Verfahren in der Angewandten Mineralogie</td>
<td>Vorlesung / Übung 2</td>
<td></td>
<td>Leonard Henrichs, Gerhard Ott, Frank Schilling</td>
</tr>
<tr>
<td>WS 17/18</td>
<td>6339083</td>
<td>Petrophysik I</td>
<td>Vorlesung (VÜ) / Übung 2</td>
<td></td>
<td>Agnes Kontny, Frank Schilling</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
Teilleistung: Berufspraktikum [T-BGU-108210]

Verantwortung:
Bestandteil von: [M-BGU-103996] Berufspraktikum

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**

Die Erfolgskontrolle in dieser Teilleistung erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 MSc Angewandte Geowissenschaften in Form einer Prüfungsleistung anderer Art (benoteter Praktikumsbericht ca. 10-20 Seiten, äquivalent zum Bericht der Projektstudie, und ca. 20min Präsentation). Die Benotung erfolgt durch den Dozenten, welcher das Praktikum genehmigt hat.

**Voraussetzungen**

Der/die Studierende ist für die Akquisition und Organisation des Praktikumsplatzes selbst verantwortlich. Für die Anerkennung gelten folgende Voraussetzungen:

- Der/die Studierende sucht sich vor Antritt des Praktikums eigenständig einen prüfungsberechtigten Dozenten der AGW (in Zweifelsfällen Vorsitzender des Prüfungsausschusses), welcher
  
  1. Die geowissenschaftliche Relevanz aufgrund der Vorlage eines mit der betreffenden Firma/Institution abgestimmten schriftlichen Arbeitsplanes (Inhalt, zeitlicher Rahmen) bestätigt und für die Benotung des abschließenden Berichtes verantwortlich ist.

**Anmerkung**

Das genehmigungspflichtige Berufspraktikum kann als eines von 2 Modulen (Projektstudie oder Berufspraktikum) innerhalb der geowissenschaftlichen Kernkompetenzen, Pflichtmodule, gewählt werden.
**Teileistung: Bohrloch-Technologie [T-BGU-104851]**

**Verantwortung:** Thomas Kohl  
**Bestandteil von:** [M-BGU-102449] Bohrloch-Technologie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339095</td>
<td>Bohrlochtechnologien I (Logging)</td>
<td>Vorlesung (VÜ) / Übung 2</td>
<td></td>
<td>Thomas Kohl</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6310426</td>
<td>Drilling</td>
<td>Vorlesung (VÜ) / Übung 2</td>
<td></td>
<td>Thomas Kohl, Birgit Müller</td>
</tr>
</tbody>
</table>

### Erfolgskontrolle(n)

Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung von 90 Minuten (45min Logging, 45min Drilling). In die Klausurnote fließt der Seminarvortrag im Rahmen der Lehrveranstaltung “Drilling” ein.

### Voraussetzungen

keine

### Anmerkung

Der Seminarvortrag im Rahmen der Lehrveranstaltung “Drilling” besteht aus einer Präsentation mit 20min, 10min Diskussion und der schriftlichen Ausarbeitung des Beitrags.
Teilleistung: Diagenesis [T-BGU-107559]

Verantwortung: Christoph Hilgers
Bestandteil von: [M-BGU-103734] Diagenesis and Cores

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339070</td>
<td>Diagenesis</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Ivy Becker, Marita Felder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle in dieser Teilleistung erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer Prüfungsleistung anderer Art (Bericht zum Modul).

Voraussetzungen
Modul Reservoir-Geology
<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

**Voraussetzungen**
keine
## Teilleistung: Elektronenmikroskopie II [T-PHYS-107600]

**Verantwortung:** Dagmar Gerthsen

**Bestandteil von:** [M-PHYS-103761] Elektronenmikroskopie II

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

### Voraussetzungen

keine
Teilleistung: Erd- und Grundbau [T-BGU-100068]

Verantwortung: Theodoros Triantafyllidis
Bestandteil von: [M-BGU-100068] Erd- und Grundbau

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6251701</td>
<td>Gründungsvarianten</td>
<td>Vorlesung (VU) / Übung</td>
<td>2</td>
<td>Theodoros Triantafyllidis</td>
</tr>
<tr>
<td>WS 17/18</td>
<td>6251703</td>
<td>Grundlagen des Erd- und Dammbaus</td>
<td>Vorlesung (VU) / Übung</td>
<td>2</td>
<td>Andreas Bieberstein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung, 90 min.

Voraussetzungen

keine

Empfehlungen

Bearbeitung der Studienarbeit zur Prüfungsvorbereitung

Anmerkung

keine

Auszug aus der Veranstaltung: Gründungsvarianten (WS 17/18)

Lernziel


Inhalt

· Sicherheitsnachweise im Erd- und Grundbau
· Projektierung von Gründungsaufgaben
· Vordimensionierung von Skelettbau auf teilweise weichem Untergrund, Dammschüttung und Brückenwiderlager auf weichem Boden
· Varianten des Baugrubenverbau für ein U-Bahn-Los
· Verankerungen
· Ufereinfassungen mit verankerter Spundwand
· Böschungssicherung und Böschungsentwässerung
· Stützbauwerke mit konstruktiver Böschungssicherung
· Unterfangungen und Abfangungen
· Beobachtungsmethode.

Literatur

Witt. K.J. (2008), Grundbau-Taschenbuch, Teil 1,
U. Smolotczyk, U. (2001), Grundbau-Taschenbuch, Teil 2-3,

Auszug aus der Veranstaltung: Grundlagen des Erd- und Dammbaus (WS 17/18)
Lernziel

Inhalt
- Quer- und Längsprofil von Schüttdämmen
- Gestaltungserfordernisse des Dammquerschnitts
- Bauweisen von Dichtungen
- Zusammenwirken von Damm und Untergrund
- Bauweisen zur Untergrundabriegelung
- Dammbaustoffe mit Anforderungen und Eigenschaften
- Herstellung von Dämmen
- Sickerströmung und Sickernetze
- Strömungsfälle mit fester Berandung und freier Oberfläche
- Erosion, Suffosion, Piping, Kolmation und Fugenerosion
- Standsicherheit von Dämmen.

Literatur
Striegler (1998), Dammbau in Theorie und Praxis, Verlag für Bauwesen Berlin
Kutzner (1996), Erd- und Steinschüttdämme für Stauanlagen, Enke Verlag Stuttgart
<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>Studienleistung</td>
<td>1</td>
</tr>
</tbody>
</table>

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339092</td>
<td>Exkursion zu Geothermie I</td>
<td>Exkursion (EXK)</td>
<td></td>
<td>Thomas Kohl</td>
</tr>
</tbody>
</table>

### Erfolgskontrolle(n)
Exkursionsteilnahme mit Bericht oder im Falle von Verhinderung in Rücksprache mit Dozenten unbenotete Hausarbeit im selben Umfang

### Voraussetzungen
keine
Teilleistung: Felsmechanik und Tunnelbau [T-BGU-100069]

Verantwortung: Carlos Grandas Tavera, Theodoros Triantafyllidis
Bestandteil von: [M-BGU-100069] Felsmechanik und Tunnelbau

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6251804</td>
<td>Grundlagen der Felsmechanik</td>
<td>Vorlesung (VU) / Übung 2</td>
<td></td>
<td>Carlos Grandas Tavera</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6251806</td>
<td>Grundlagen des Tunnelbaus</td>
<td>Vorlesung (VU) / Übung 2</td>
<td></td>
<td>Thomas Grundhoff</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 90 min.

Voraussetzungen
keine

Empfehlungen
Bearbeitung der Studienarbeit zur Prüfungsvorbereitung

Anmerkung
keine
Teilleistung: Field Course Applied Structural Geology [T-BGU-107508]

Verantwortung: Agnes Kontny
Bestandteil von: [M-BGU-102451] Structural Geology

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6310406</td>
<td>Geländeübung zur Angewandten Strukturgeologie</td>
<td>Übung (Ü) 3</td>
<td>Agnes Kontny</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)


Voraussetzungen

keine
**Teilleistung: Geochemische Prospektion [T-BGU-104843]**

**Verantwortung:** Stefan Norra  
**Bestandteil von:** [M-BGU-102446] Geochemische Prospektion

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339097</td>
<td>Methodik der Auswertung geochemischer Datensätze</td>
<td>Vorlesung (VU) / Übung 2</td>
<td>2</td>
<td>Utz Kramar, Stefan Norra</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6310422</td>
<td>Projekt Geochemische Prospektion</td>
<td>Vorlesung (VU) / Übung 2</td>
<td>2</td>
<td>Jochen Kolb, Stefan Norra, Cliffodd Patten</td>
</tr>
</tbody>
</table>

### Erfolgskontrolle(n)

### Voraussetzungen
Keine

### Empfehlungen
Keine

### Anmerkung
Keine
# Teilleistung: Geologie [T-BGU-104812]

**Verantwortung:** Christoph Hilgers  
**Bestandteil von:** [M-BGU-102431] Geologie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

## Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339080</td>
<td>Analysis of Geological Structures</td>
<td>Vorlesung / Übung 3 (VU)</td>
<td>3</td>
<td>Christoph Hilgers</td>
</tr>
<tr>
<td>WS 17/18</td>
<td>6339086</td>
<td>Depositional Systems</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Christoph Hilgers</td>
</tr>
</tbody>
</table>

## Voraussetzungen
keine
Teilleistung: Geologische Gasspeicherung [T-BGU-104841]

Verantwortung: Frank Schilling
Bestandteil von: [M-BGU-102445] Geologische Gasspeicherung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6339093</td>
<td>Grundlagen der Gasspeicherung/ Geological Storage of Gas</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Frank Schilling</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6339094</td>
<td>Grundlagen der Reservoirgeomechanik</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Birgit Müller, Frank Schilling</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung oder einer Prüfung anderer Art

Voraussetzungen
keine

Anmerkung
Im Sommersemester 2018 wird in diesem Modul erstmals die neue Lehrveranstaltung “Grundlagen der Reservoirgeomechanik” gelesen. Diese ist neben der Lehrveranstaltung “Grundlagen der Geologischen Gasspeicherung” Teil der Gesamtmodulprüfung.
Teileistung: Geotechnisches Ingenieurwesen [T-BGU-107465]

Verantwortung: Theodoros Triantafyllidis

Bestandteil von: [M-BGU-103698] Geotechnisches Ingenieurwesen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6200515</td>
<td>Grundlagen des Grundbaus [bauiBFP7-GEOING]</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Theodoros Triantafyllidis</td>
</tr>
<tr>
<td>WS 17/18</td>
<td>6200516</td>
<td>Übungen zu Grundlagen des Grundbaus [bauiBFP7-GEOING]</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Theodoros Triantafyllidis</td>
</tr>
<tr>
<td>WS 17/18</td>
<td>6200517</td>
<td>Tutorium zu Grundlagen des Grundbaus</td>
<td>Tutorium (Tu)</td>
<td>2</td>
<td>Theodoros Triantafyllidis</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6200415</td>
<td>Grundlagen der Bodenmechanik (bauiBFP7- Vorlesung (V) GEOING)</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Theodoros Triantafyllidis</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6200416</td>
<td>Übungen zu Grundlagen der Bodenmechanik Übung (Ü) (bauiBFP7-GEOING)</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Theodoros Triantafyllidis</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6200417</td>
<td>Tutorien zu Grundlagen der Bodenmechanik Tutorium (Tu)</td>
<td>Tutorium (Tu)</td>
<td>2</td>
<td>Assistenten</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 150 min.

Voraussetzungen
keine

Empfehlungen
Die Bearbeitung von freiwilligen Studienarbeiten wird als Prüfungsvorbereitung dringend empfohlen.

Anmerkung
keine

Auszug aus der Veranstaltung: Grundlagen des Grundbaus [bauiBFP7-GEOING] (WS 17/18)

Lernziel

Inhalt
- Sicherheitsnachweise im Erd- und Grundbau
- Grundwasserhaltungen
- Flachgründungen
- Stützbauwerke
- Baugrubenverbau
- Pfahlgründungen, Tiefgründungen und Gründungen im offenen Wasser
- Baugrundverbesserungen,
- Tunnelbau

Literatur
Triantafyllidis, Th. (2011): Arbeitsblätter und Übungsblätter Grundbau

Angewandte Geowissenschaften Master
Modulhandbuch mit Stand 26.06.2018 für Sommersemester 2018
**Teilleistung: Geothermie: Energie- und Transportprozesse [T-BGU-104813]**

**Verantwortung:** Thomas Kohl, Frank Schilling  
**Bestandteil von:** [M-BGU-102432] Geothermie: Energie- und Transportprozesse

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

**Veranstaltungen**

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339090</td>
<td>Energiehaushalt der Erde</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Frank Schilling</td>
</tr>
<tr>
<td>WS 17/18</td>
<td>6339091</td>
<td>Allgemeine Geothermie</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Thomas Kohl</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**  
siehe Modulbeschreibung  

**Voraussetzungen**  
keine
## Teilleistung: Geothermische Nutzung [T-BGU-108017]

**Verantwortung:** Thomas Kohl  
**Bestandteil von:** [M-BGU-102447] Angewandte Geothermie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6310425</td>
<td>Geothermische Nutzung</td>
<td>Vorlesung / Übung 2</td>
<td></td>
<td>Thomas Kohl</td>
</tr>
</tbody>
</table>

### Erfolgskontrolle(n)

Die Erfolgskontrolle in dieser Teilleistung erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung.

### Voraussetzungen

one
**Teilleistung: Geowissenschaftliche Geländeübung/Exkursion [T-BGU-104878]**

**Verantwortung:** Armin Zeh

**Bestandteil von:** [M-BGU-102456] Geowissenschaftliche Geländeübung / Exkursion

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

**Veranstaltungen**

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6310460</td>
<td>Geowissenschaftliche Geländeübung/Exkursion</td>
<td>Übung (Ü)</td>
<td>KIT Dozenten</td>
<td></td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**


**Voraussetzungen**

keine

**Anmerkung**

Teilleistung: Grundlagen des Projektmanagements [T-BGU-107639]

Verantwortung: Philipp Blum
Bestandteil von: [M-BGU-102438] Projektstudie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>englisch</td>
<td>Jedes Sommersemester</td>
<td>Studienleistung</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6339083</td>
<td>Grundlagen des Projektmanagements</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Vanessa Montoya Garcia</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Teilnahmepflicht an der Lehrveranstaltung Grundlagen des Projektmanagements

Voraussetzungen
keine
### Teilleistung: Grundwasser und Dammbau [T-BGU-100091]

**Verantwortung:** Andreas Bieberstein  
**Bestandteil von:** [M-BGU-100073] Grundwasser und Dammbau

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6251814</td>
<td>Geotechnische Grundwasserprobleme</td>
<td>Vorlesung / Übung 2</td>
<td>2</td>
<td>Andreas Bieberstein</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6251816</td>
<td>Erddammbau</td>
<td>Vorlesung / Übung 2</td>
<td>2</td>
<td>Andreas Bieberstein</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**  
mündliche Prüfung, ca. 40 min.

**Voraussetzungen**  
keine

**Empfehlungen**  
keine

**Anmerkung**  
keine
**Teilleistung: Hydrogeologie: Gelände- und Labormethoden [T-BGU-104834]**

**Verantwortung:** Nadine Göppert
**Bestandteil von:** [M-BGU-102441] Hydrogeologie: Gelände- und Labormethoden

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

**Veranstaltungen**

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6310412</td>
<td>Gelände- und Laborübungen/Field and Laboratory Exercises</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Nadine Göppert, Tanja Liesch</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6310414</td>
<td>Vorbereitendes Seminar/Preparatory Workshop</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Nadine Göppert, Tanja Liesch</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**

Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer Prüfungsleistung anderer Art (Seminarvortrag und benoteter Bericht).

**Voraussetzungen**

keine
**Teilleistung: Hydrogeologie: Grundwassermodellierung [T-BGU-104757]**

**Verantwortung:** Tanja Liesch  
**Bestandteil von:** [M-BGU-102439] Hydrogeologie: Grundwassermodellierung  

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

**Veranstaltungen**  

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339113</td>
<td>Grundwassermodellierung</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Tanja Liesch, Wolfgang Schäfer</td>
</tr>
<tr>
<td>WS 17/18</td>
<td>6339114</td>
<td>Übung zu Grundwassermodellierung</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Tanja Liesch, Wolfgang Schäfer</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**  

**Voraussetzungen**  
keine

**Empfehlungen**  
erfolgreiche Teilnahme am Modul “Hydrogeologie: Methoden und Anwendungen”
**Teilleistung: Hydrogeologie: Karst und Isotope [T-BGU-104758]**

**Verantwortung:** Nico Goldscheider  
**Bestandteil von:** [M-BGU-102440] Hydrogeologie: Karst und Isotope

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

**Veranstaltungen**

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339076</td>
<td>Karsthydrogeologie</td>
<td>Vorlesung / Übung 2</td>
<td>2</td>
<td>Nico Goldscheider</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6339078</td>
<td>Exkursion zur Karsthydrogeologie/ Field Trip Karst Hydrogeology</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Nico Goldscheider</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**
Schriftliche Modulklausur, 90 Minuten

**Voraussetzungen**
keine

**Empfehlungen**
erfolgreiche Teilnahme am Modul “Hydrogeologie: Methoden und Anwendungen”
### Verantwortung: Nico Goldscheider

### Bestandteil von: [M-BGU-102433] Hydrogeologie: Methoden und Anwendungen

#### Leistungspunkte

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>7</th>
</tr>
</thead>
</table>

#### Sprache

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Deutsch</th>
</tr>
</thead>
</table>

#### Turnus

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Jedes Semester</th>
</tr>
</thead>
</table>

#### Prüfungsform

<table>
<thead>
<tr>
<th>Prüfungsform</th>
<th>Prüfungsleistung schriftlich</th>
</tr>
</thead>
</table>

#### Version

<table>
<thead>
<tr>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339081</td>
<td>Angewandte Hydrogeologie</td>
<td>Vorlesung</td>
<td>2</td>
<td>Nico Goldscheider,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(VU)</td>
<td></td>
<td>Nadine Göppert</td>
</tr>
<tr>
<td>WS 17/18</td>
<td>6339087</td>
<td>Regionale Hydrogeologie</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Nico Goldscheider, Nadine Göppert</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6339081</td>
<td>Hydraulische Methoden/ Hydraulic Methods</td>
<td>Vorlesung (VU)</td>
<td>1,5</td>
<td>Tanja Liesch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Übung 1,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Erfolgskontrolle(n)


### Voraussetzungen

keine
Teilleistung: Industrial Minerals and Environment [T-BGU-108191]

Verantwortung: Jochen Kolb
Bestandteil von: [M-BGU-103993] Nichtmetallische Mineralische Rohstoffe und Umwelt

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6310124</td>
<td>Nichtmetallische mineralische Rohstoffe (Industrial Minerals)</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Jochen Kolb</td>
</tr>
<tr>
<td>WS 17/18</td>
<td>6339098</td>
<td>Umweltaspekte der mineralischen Rohstoffgewinnung</td>
<td>Vorlesung (V)</td>
<td></td>
<td>Elisabeth Eiche, N.N.</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle in dieser Teilleistung erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer Prüfungsleistung anderer Art (benoteter Modulbericht).

Voraussetzungen
keine

Anmerkung
2. Das Absolvieren dieses Moduls schließt das gleichzeitige Absolvieren des Moduls "Mineralische Rohstoffe und Umwelt" aus, da eine Lehrveranstaltung in beiden Modulen vorkommt.
Teilleistung: Ingenieurgeologie: Labor- und Geländemethoden [T-BGU-104814]

Verantwortung: Philipp Blum
Bestandteil von: [M-BGU-102434] Ingenieurgeologie: Labor- und Geländemethoden

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18 6339112 Ingenieurgeologisches Laborpraktikum</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Philipp Blum, Kathrin Menberg, Thomas Mutschler</td>
</tr>
<tr>
<td>SS 2018 6310404 Ingenieurgeologisches Geländepraktikum/Engineering Geological</td>
<td>Übung (Ü)</td>
<td>3</td>
<td>Philipp Blum</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine
Teilleistung: Ingenieurgeologie: Massenbewegungen und Modellierung
[T-BGU-104836]

Verantwortung: Philipp Blum
Bestandteil von: [M-BGU-102442] Ingenieurgeologie: Massenbewegungen und Modellierung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
</tr>
<tr>
<td>WS 17/18</td>
</tr>
<tr>
<td>SS 2018</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine
**Teilleistung: Kartierkurs und Geodatenverarbeitung [T-BGU-104819]**

**Verantwortung:** Kirsten Drüppel  
**Bestandteil von:** [M-BGU-102437] Kartierkurs und Geodatenverarbeitung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

**Veranstaltungen**

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6310399</td>
<td>Digitale Geoinformationsverarbeitung/ Processing of Geospatial Data</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Jochen Klinger, Tanja Liesch</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6310401</td>
<td>Geologische Kartierübung für Fortgeschrittene/ Advanced Geological Mapping (field course)</td>
<td>Übung (Ü)</td>
<td>4</td>
<td>Kirsten Drüppel, Jens Carsten Grimmmer</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**

Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer Prüfungsleistung anderer Art (Kartierbericht und geologische Karte).

**Voraussetzungen**

keine
Teilleistung: Masterarbeit [T-BGU-107516]

Verantwortung: Philipp Blum
Bestandteil von: [M-BGU-103726] Modul Masterarbeit

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Jedes Semester</td>
<td>Abschlussarbeit</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
 hinterlegt in Modulbeschreibung

Voraussetzungen
 hinterlegt in Modulbeschreibung

Anmerkung
Das Modul Masterarbeit besteht aus der Masterarbeit und einer Präsentation. Die Präsentation soll spätestens acht Wochen nach der Abgabe der Masterarbeit stattfinden.
Teilleistung: Microstructures [T-BGU-107507]

Verantwortung: Agnes Kontny
Bestandteil von: [M-BGU-102451] Structural Geology

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6339085</td>
<td>Mikrogefüge von Gesteinen / Microstructures</td>
<td>Vorlesung (VU) / Übung 2</td>
<td>2</td>
<td>Agnes Kontny</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)


Voraussetzungen
keine
**Teilleistung: Mineral- und Gesteinsphysik [T-BGU-104838]**

**Verantwortung:** Frank Schilling  
**Bestandteil von:** [M-BGU-102443] Angewandte Mineralogie: Petrophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

**Veranstaltungen**

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6310428</td>
<td>Petrophysik II</td>
<td>Vorlesung / Übung (VU)</td>
<td>3 + 1</td>
<td>Frank Schilling</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**


**Voraussetzungen**

keine
Teilleistung: Mineralisch gebundene Werkstoffe im Bauwesen [T-BGU-104856]

Verantwortung: Matthias Schwotzer
Bestandteil von: [M-BGU-102453] Mineralisch gebundene Werkstoffe im Bauwesen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339089</td>
<td>Mineralische Bindemittel im Bauwesen</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Matthias Schwotzer</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6310419</td>
<td>Werkstoffschädigende Reaktionen</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Matthias Schwotzer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer mündlichen Prüfung über beide Lehrveranstaltungen

Voraussetzungen

keine
Teilleistung: Mineralische Rohstoffe und Umwelt [T-BGU-104815]

Verantwortung: Elisabeth Eiche
Bestandteil von: [M-BGU-102435] Mineralische Rohstoffe und Umwelt

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339098</td>
<td>Umweltaspekte der mineralischen Rohstoffgewinnung</td>
<td>Vorlesung (V)</td>
<td></td>
<td>Elisabeth Eiche, N.N.</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6310405</td>
<td>Geochemische Stoffkreisläufe</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Elisabeth Eiche, N.N.</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6310418</td>
<td>Entstehungsprozesse Mineralischer Rohstoffe</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Jochen Kolb</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkung
Keine
Teilleistung: Numerische Methoden in den Geowissenschaften [T-BGU-104816]

Verantwortung: Thomas Kohl
Bestandteil von: [M-BGU-102436] Numerische Methoden in den Geowissenschaften

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339078</td>
<td>Numerische Methoden in den Geowissenschaften</td>
<td>Vorlesung / Übung (VU)</td>
<td>4</td>
<td>Emmanuel Gaucher, Thomas Kohl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine
Teilleistung: Oberseminar Geothermie [T-BGU-104847]

Verantwortung: Thomas Kohl
Bestandteil von: [M-BGU-102448] Themen der Geothermieforschung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339118</td>
<td>Oberseminar Geothermie</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Thomas Kohl</td>
</tr>
</tbody>
</table>

### Erfolgskontrolle(n)


### Voraussetzungen

keine
Teilleistung: Petrologie [T-BGU-104854]

Verantwortung: Kirsten Drüppel
Bestandteil von: [M-BGU-102452] Petrologie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6339104</td>
<td>Gesteinsbildende Prozesse/ Rock forming processes</td>
<td>Vorlesung (V)</td>
<td></td>
<td>Kirsten Drüppel</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6339108</td>
<td>Geländeübung/ Field course</td>
<td>Übung (U)</td>
<td></td>
<td>Kirsten Drüppel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine
Teilleistung: Projektstudie [T-BGU-104826]

Verantwortung: Philipp Blum
Bestandteil von: [M-BGU-102438] Projektstudie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6339082</td>
<td>Projektstudie/ Project Study</td>
<td>Übung (Ü)</td>
<td>6</td>
<td>Dozenten der Geowissenschaften</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine

Anmerkung
Teilleistung: Radiogeochemische Geländeübung und Seminar [T-BGU-107623]

Verantwortung: Frank Heberling
Bestandteil von: [M-BGU-102455] Umweltgeologie: Radio- und chemotoxische Elemente

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6339089</td>
<td>Radiogeochemische Geländeübung und Radiogeochemisches Seminar</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Frank Heberling, Volker Metz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle in der Teilleistung Radiogeochemische Geländeübung und Seminar erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer Prüfungsleistung anderer Art, (Seminar als Vorbereitung zur Geländeübung und Bericht).

Voraussetzungen
keine
Teilleistung: Reservoir-Analogs and Core Description [T-BGU-107624]

Verantwortung: Christoph Hilgers
Bestandteil von: [M-BGU-103734] Diagenesis and Cores

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339071</td>
<td>Reservoir Analogs &amp; Core Description</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Yasar Manß, Christina Schmidt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle in dieser Teilleistung erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer Prüfungsleistung anderer Art (Bericht zum Modul).

Voraussetzungen
Modul Reservoir-Geology teilgenommen
Teilleistung: Reservoir-Geology [T-BGU-107563]

Verantwortung: Christoph Hilgers
Bestandteil von: [M-BGU-103742] Reservoir-Geology

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6310600</td>
<td>Reservoir-Geology</td>
<td>Vorlesung / Übung 2</td>
<td></td>
<td>Christoph Hilgers</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung (Reservoir-Geology) mit Einbezug des Feldbuchs.

Voraussetzungen
keine

Anmerkung
a) Reservoir-Geology: Während der Vorlesungszeit im Sommersemester
b) Field Seminar Reservoir-Geology: Geländeseminar in der vorlesungsfreien Zeit. For participants of field seminar Reservoir-Geology: Please mind the visa regulations.
**Teilleistung: Sedimentpetrologie [T-BGU-107558]**

**Verantwortung:** Armin Zeh  
**Bestandteil von:** [M-BGU-103733] Sedimentpetrologie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

**Veranstaltungen**

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339040</td>
<td>Sedimentpetrologie</td>
<td>Vorlesung / Übung 4</td>
<td>Armin Zeh</td>
<td></td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**  

**Voraussetzungen**  
keine

**Empfehlungen**  
Grundlagen der Petrologie, Mineralogie, Kristalloptik und (Isotopen)geochemie sind hilfreich.
Teilleistung: Spezialthemen der Angewandten Geothermie [T-BGU-104846]

Verantwortung: Thomas Kohl
Bestandteil von: [M-BGU-102448] Themen der Geothermieforschung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339117</td>
<td>Spezialthemen der Geothermie</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Thomas Kohl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle in dieser Teilleistung erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung.

Voraussetzungen

keine

Anmerkung

Zu den Übungen im Rahmen der Lehrveranstaltung Spezialthemen der Geothermie gehört die verpflichtende Teilnahme an 3 Petrothermseminaren.
Teilleistung: Stadtökologie [T-BGU-103001]

Verantwortung: Stefan Norra
Bestandteil von: [M-BGU-101568] Stadtökologie

Leistungspunkte
Turnus
Prüfungsform
Version
3
Jedes Wintersemester
Prüfungsleistung anderer Art
3

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6111211</td>
<td>Seminar Stadtökologie</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Stefan Norra</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Vortrag und Hausarbeit

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkung
Keine
Teilleistung: Stadtökologie Praktikum [T-BGU-106685]

Verantwortung: Stefan Norra
Bestandteil von: [M-BGU-101568] Stadtökologie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>Studienleistung praktisch</td>
<td>2</td>
</tr>
</tbody>
</table>

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6111213</td>
<td>Stadtökologie</td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Reiner Gebhardt, Stefan Norra</td>
</tr>
</tbody>
</table>

### Erfolgskontrolle(n)

Benoeter Bericht

### Voraussetzungen

Keine

### Empfehlungen

Keine

### Anmerkung

Keine
<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Studienleistung schriftlich</td>
<td>3</td>
</tr>
</tbody>
</table>

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6111211</td>
<td>Stadtökologie</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Stefan Norra</td>
</tr>
</tbody>
</table>

### Erfolgskontrolle(n)
- Unbenotete Übungsblätter in ILIAS (E-Learning)

### Voraussetzungen
Keine

### Empfehlungen
Keine

### Anmerkung
Keine
Auszug aus der Veranstaltung: Gründungsvarianten (WS 17/18)

Lernziel

Inhalt
· Sicherheitsnachweise im Erd- und Grundbau
· Projektierung von Gründungsaufgaben
· Vordimensionierung von Skelettbau auf teilweise weichem Untergrund, Dammschüttung und Brückenwiderlager auf weichem Boden
· Varianten des Baugrubenverbau für ein U-Bahn-Los
· Verankerungen
· Ufereinfassungen mit verankerter Spundwand
· Böschungssicherung und Böschungsentwässerung
· Stützbauwerke mit konstruktiver Böschungssicherung
· Unterfangungen und Abfangungen
· Beobachtungsmethode.

Literatur

Auszug aus der Veranstaltung: Grundlagen des Erd- und Dammbaus (WS 17/18)
**Lernziel**

**Inhalt**
- Quer- und Längsprofil von Schüttdämmen
- Gestaltungserfordernisse des Dammquerschnitts
- Bauweisen von Dichtungen
- Zusammenwirken von Damm und Untergrund
- Bauweisen zur Untergrundabriegelung
- Dammstoffe mit Anforderungen und Eigenschaften
- Herstellung von Dämmen
- Sickerströmung und Sickernetze
- Strömungsfälle mit fester Berandung und freier Oberfläche
- Erosion, Suffosion, Piping, Kolmation und Fugenerosion
- Standsicherheit von Dämmen.

**Literatur**
Striegler (1998), Dammbau in Theorie und Praxis, Verlag für Bauwesen Berlin
Kutzner (1996), Erd- und Steinschüttdämmen für Staustufen, Enke Verlag Stuttgart
**Verantwortung:** Carlos Grandas Tavera, Theodoros Triantafyllidis  
**Bestandteil von:** [M-BGU-100069] Felsmechanik und Tunnelbau

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>Studienleistung</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018 6251804</td>
<td>Grundlagen der Felsmechanik</td>
<td>Vorlesung (VU) / Übung 2</td>
<td>Carlos Grandas Tavera</td>
</tr>
<tr>
<td>SS 2018 6251806</td>
<td>Grundlagen des Tunnelbaus</td>
<td>Vorlesung (VU) / Übung 2</td>
<td>Thomas Grundhoff</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**  
Bericht ca. 15 Seiten; Aufgabenstellung bei Dozenten

**Voraussetzungen**
keine

**Empfehlungen**
keine

**Anmerkung**
keine
<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6251801</td>
<td>Theoretische Bodenmechanik</td>
<td>Vorlesung / Übung 4</td>
<td></td>
<td>Andrzej Niemunis</td>
</tr>
</tbody>
</table>

### Erfolgskontrolle(n)

schriftliche Prüfung, 90 min.

### Voraussetzungen

keine

### Empfehlungen

keine

### Anmerkung

keine
## Teilleistung: Tonmineralogie Einführung [T-BGU-104839]

**Verantwortung:** Katja Emmerich  
**Bestandteil von:** [M-BGU-102444] Angewandte Mineralogie: Tone und Tonminerale

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339084</td>
<td>Tonmineralogie Einführung</td>
<td>Vorlesung / Übung 2 (VÜ)</td>
<td>Katja Emmerich</td>
<td></td>
</tr>
</tbody>
</table>

### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung.

**Voraussetzungen**

keine
**Teilleistung: Tonmineralogie Vertiefung [T-BGU-104840]**

**Verantwortung:** Katja Emmerich  
**Bestandteil von:** [M-BGU-102444] Angewandte Mineralogie: Tone und Tonminerale

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6310430</td>
<td>Anwendungen von Tonen und Laboreinführung</td>
<td>Vorlesung / Übung 2 (VU)</td>
<td>2</td>
<td>Katja Emmerich</td>
</tr>
</tbody>
</table>

### Erfolgskontrolle(n)


### Voraussetzungen

keine

### Anmerkung

Für die Teilleistung Tonmineralogie Vertiefung besteht Anwesenheitspflicht für die praktischen Laborübungen vom Anfang bis zum Ende jeder Veranstaltung. Die bei dieser Veranstaltung vermittelten Inhalte können nicht im Wege eines Selbststudiums erschlossen werden.
Teilleistung: Übertagedeponien [T-BGU-100084]

Verantwortung: Andreas Bieberstein  
Bestandteil von: [M-BGU-100079] Umweltgeotechnik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

**Veranstaltungen**

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6251913</td>
<td>Übertagedeponien</td>
<td>Vorlesung</td>
<td>2</td>
<td>Andreas Bieberstein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(VU)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**

mündliche Prüfung, ca. 20 min.

**Voraussetzungen**

keine

**Empfehlungen**

keine

**Anmerkung**

keine

**Auszug aus der Veranstaltung: Übertagedeponien (WS 17/18)**

**Lernziel**


**Inhalt**

- Abfall-Situation und Abfall-Katalog
- Behördliche Vorgaben und rechtliche Grundlagen
- Deponieplanung
- MultibARRIERensystem
- Deponieelemente
- Hydraulische Nachweise
- Gastechnische Ausrüstung von Deponien
- Statische Nachweise
- Nachweis der Gebrauchstauglichkeit
- Bauausführung
- Besondere bautechnische Lösungen
- Ertüchtigung von Deponien.

**Literatur**

DGGT, GDA-Empfehlungen – Geotechnik der Deponien und Altlasten, Ernst und Sohn, Berlin  
Drescher (1997), Deponiebau, Ernst und Sohn, Berlin
**Teilleistung: Umweltgeologie: Radio- und chemotoxische Elemente [T-BGU-107560]**

**Verantwortung:** Frank Heberling  
**Bestandteil von:** [M-BGU-102455] Umweltgeologie: Radio- und chemotoxische Elemente

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>6339088</td>
<td>Geowissenschaftliche Aspekte der Entsorgung radio- und chemotoxischer Abfälle</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Frank Heberling, Volker Metz</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**  
Die Erfolgskontrolle in diesem Modul erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung über die Vorlesung sowie einer Prüfungsleistung anderer Art, (Seminar als Vorbereitung zur Geländübung und Bericht)

**Voraussetzungen**  
keine

**Empfehlungen**  
Kenntnisse zu Grundlagen der Geochemie, Hydrogeologie und Mineralogie sind hilfreich.

**Anmerkung**  
Das Seminar und die Radiogeochemische Geländübung finden als Blockkurs in der vorlesungsfreien Zeit statt.
**Teilleistung: Wasserchemie und Wassertechnologie [T-CIWVT-107585]**

**Verantwortung:** Harald Horn  
**Bestandteil von:** [M-CIWVT-103753] Wasserchemie und Wassertechnologie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

**Veranstaltungen**

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>22603</td>
<td>Naturwissenschaftliche Grundlagen der Wasserbeurteilung</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Gudrun Abbt-Braun</td>
</tr>
<tr>
<td>WS 17/18</td>
<td>22621</td>
<td>Water Technology</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Harald Horn</td>
</tr>
<tr>
<td>WS 17/18</td>
<td>22622</td>
<td>Excercises to Water Technology</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Harald Horn, und Mitarbeiter</td>
</tr>
</tbody>
</table>

**Erfolgskontrolle(n)**

Die Erfolgskontrolle erfolgt nach § 4 Abs. 2 gemäß der SPO 2016 M. Sc. Angewandte Geowissenschaften in Form einer mündlichen Prüfung.

**Voraussetzungen**

Keine
## Teilleistung: Water Technology [T-CIWVT-106802]

Verantwortung: Harald Horn  
Bestandteil von: [M-CIWVT-103407] Water Technology

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfungsform</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

### Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 17/18</td>
<td>22621</td>
<td>Water Technology</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Harald Horn</td>
</tr>
<tr>
<td>WS 17/18</td>
<td>22622</td>
<td>Excersises to Water Technology</td>
<td>Übung (U)</td>
<td>1</td>
<td>Harald Horn, und Mitarbeiter</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------------------------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altlasten - Untersuchung, Bewertung und Sanierung (T)</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angewandte Geothermie (M)</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angewandte Geothermie - Exkursion (T)</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angewandte Mineralogie: Geomaterialien (M)</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angewandte Mineralogie: Geomaterialien (T)</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angewandte Mineralogie: Petrophysik (M)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angewandte Mineralogie: Tone und Tonminerale (M)</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Berufspraektum (M)</td>
<td>9</td>
</tr>
<tr>
<td>Berufspraektum (T)</td>
<td>72</td>
</tr>
<tr>
<td>Bohrloch-Technologie (M)</td>
<td>37</td>
</tr>
<tr>
<td>Bohrloch-Technologie (T)</td>
<td>73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagenesis (T)</td>
<td>74</td>
</tr>
<tr>
<td>Diagenesis and Cores (M)</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektronenmikroskopie I (M)</td>
<td>59</td>
</tr>
<tr>
<td>Elektronenmikroskopie I (T)</td>
<td>75</td>
</tr>
<tr>
<td>Elektronenmikroskopie II (M)</td>
<td>60</td>
</tr>
<tr>
<td>Elektronenmikroskopie II (T)</td>
<td>76</td>
</tr>
<tr>
<td>Erd- und Grundbau (M)</td>
<td>53</td>
</tr>
<tr>
<td>Erd- und Grundbau (T)</td>
<td>77</td>
</tr>
<tr>
<td>Exkursion Allgemeine Geothermie (T)</td>
<td>79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Felsmechanik und Tunnelbau (M)</td>
<td>55</td>
</tr>
<tr>
<td>Felsmechanik und Tunnelbau (T)</td>
<td>80</td>
</tr>
<tr>
<td>Field Course Applied Structural Geology (T)</td>
<td>81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geochemische Prospektion (M)</td>
<td>34</td>
</tr>
<tr>
<td>Geochemische Prospektion (T)</td>
<td>82</td>
</tr>
<tr>
<td>Geologie (M)</td>
<td>12</td>
</tr>
<tr>
<td>Geologie (T)</td>
<td>83</td>
</tr>
<tr>
<td>Geologische Gasspeicherung (M)</td>
<td>22, 32</td>
</tr>
<tr>
<td>Geologische Gasspeicherung (T)</td>
<td>84</td>
</tr>
<tr>
<td>Geotechnisches Ingenieurwesen (M)</td>
<td>64</td>
</tr>
<tr>
<td>Geotechnisches Ingenieurwesen (T)</td>
<td>85</td>
</tr>
<tr>
<td>Geothermie: Energie- und Transportprozesse (M)</td>
<td>14</td>
</tr>
<tr>
<td>Geothermie: Energie- und Transportprozesse (T)</td>
<td>87</td>
</tr>
<tr>
<td>Geothermische Nutzung (T)</td>
<td>88</td>
</tr>
<tr>
<td>Geowissenschaftliche Geländeübung / Exkursion (M)</td>
<td>43</td>
</tr>
<tr>
<td>Geowissenschaftliche Geländeübung / Exkursion (T)</td>
<td>89</td>
</tr>
<tr>
<td>Grundlagen des Projektmanagements (T)</td>
<td>90</td>
</tr>
<tr>
<td>Grundwasser und Dammbau (M)</td>
<td>62</td>
</tr>
<tr>
<td>Grundwasser und Dammbau (T)</td>
<td>91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogeologie: Gelände- und Labormethoden (M)</td>
<td>28</td>
</tr>
<tr>
<td>Hydrogeologie: Gelände- und Labormethoden (T)</td>
<td>92</td>
</tr>
<tr>
<td>Hydrogeologie: Grundwassermessung (M)</td>
<td>26</td>
</tr>
<tr>
<td>Hydrogeologie: Grundwassermessung (T)</td>
<td>93</td>
</tr>
<tr>
<td>Hydrogeologie: Karst und Isotope (M)</td>
<td>19, 27</td>
</tr>
<tr>
<td>Hydrogeologie: Karst und Isotope (T)</td>
<td>94</td>
</tr>
<tr>
<td>Hydrogeologie: Methoden und Anwendungen (M)</td>
<td>16</td>
</tr>
<tr>
<td>Hydrogeologie: Methoden und Anwendungen (T)</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Minerals and Environment (T)</td>
<td>96</td>
</tr>
<tr>
<td>Ingenieurgeologie: Labor- und Geländeforschung (M)</td>
<td>17</td>
</tr>
<tr>
<td>Ingenieurgeologie: Labor- und Geländeforschung (T)</td>
<td>97</td>
</tr>
<tr>
<td>Ingenieurgeologie: Massenbewegungen und Modellierung (M)</td>
<td>25, 29</td>
</tr>
<tr>
<td>Ingenieurgeologie: Massenbewegungen und Modellierung (T)</td>
<td>98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kartierkurs und Geodatenverarbeitung (M)</td>
<td>8</td>
</tr>
<tr>
<td>Kartierkurs und Geodatenverarbeitung (T)</td>
<td>99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Masterarbeit (T)</td>
<td>100</td>
</tr>
<tr>
<td>Microstructures (T)</td>
<td>101</td>
</tr>
<tr>
<td>Mineral- und Gesteinsphysik (T)</td>
<td>102</td>
</tr>
<tr>
<td>Mineralisch gebundene Werkstoffe im Bauwesen (M)</td>
<td>48</td>
</tr>
<tr>
<td>Mineralisch gebundene Werkstoffe im Bauwesen (T)</td>
<td>103</td>
</tr>
<tr>
<td>Mineralische Rohstoffe und Umwelt (M)</td>
<td>18</td>
</tr>
<tr>
<td>Mineralische Rohstoffe und Umwelt (T)</td>
<td>104</td>
</tr>
<tr>
<td>Modul Masterarbeit (M)</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nichtmetallische Mineralische Rohstoffe und Umwelt (M)</td>
<td>24, 50</td>
</tr>
<tr>
<td>Numerische Methoden in den Geowissenschaften (M)</td>
<td>6</td>
</tr>
<tr>
<td>Numerische Methoden in den Geowissenschaften (T)</td>
<td>105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oberseminar Geothermie (T)</td>
<td>106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrologie (M)</td>
<td>40</td>
</tr>
<tr>
<td>Petrologie (T)</td>
<td>107</td>
</tr>
<tr>
<td>Projektstudie (M)</td>
<td>10</td>
</tr>
<tr>
<td>Projektstudie (T)</td>
<td>108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiogeochemische Geländeübung und Seminar (T)</td>
<td>109</td>
</tr>
</tbody>
</table>
Reservoir-Analogs and Core Description (T) ............... 110
Reservoir-Geology (M) ................................ 20, 47
Reservoir-Geology (T) ................................ 111

S
Sedimentpetrologie (M) .................................... 21, 44
Sedimentpetrologie (T) .................................... 112
Spezialthemen der Angewandten Geothermie (T) ......... 113
Stadtökologie (M) ........................................ 67
Stadtökologie (T) .......................................... 114
Stadtökologie Praktikum (T) ............................. 115
Stadtökologie Vorlesung (T) ............................. 116
Structural Geology (M) .................................... 39
Studienarbeit “Erd- und Grundbau” (T) ................. 117
Studienarbeit “Felsmechanik und Tunnelbau” (T) ....... 119

T
Themen der Geothermieforschung (M) ..................... 36
Theoretische Bodenmechanik (M) ....................... 51
Theoretische Bodenmechanik (T) ....................... 120
Tonmineralogie Einführung (T) ........................... 121
Tonmineralogie Vertiefung (T) ........................... 122

U
Übertagedeponien (T) ...................................... 123
Umweltgeologie: Radio- und chemotoxische Elemente (M) 41
Umweltgeologie: Radio- und chemotoxische Elemente (T) 124
Umweltgeotechnik (M) ...................................... 57

W
Wasserchemie und Wassertechnologie (M) ............... 61
Wasserchemie und Wassertechnologie (T) ............... 125
Water Technology (M) .................................... 66
Water Technology (T) .................................... 126