

Module Handbook Applied Geosciences Master 2016 (Master of Science (M.Sc.))

SPO 2016 Summer term 2020 Date: 19.02.2020

KIT DEPARTMENT OF CIVIL ENGINEERING, GEO-AND ENVIRONMENTAL SCIENCES

www.kit.edu

Table Of Contents

	Welcome to the new module handbook	
2.	Qualification Goals of the Master Applied Geosciences	6
	About this handbook - Notes and Rules	
	Overview MSc profile Energy Resources Storage	
	Field of study structure	
•.	5.1. Master Thesis	
	5.2. Key Competences in Geosciences	
	5.3. Specialization in Geosciences	
	5.4. Specific Supplements	
6	Modules	
0.	6.1. Advanced Analysis in GIS [GEOD-MPEA-3] - M-BGU-101053	
	6.2. Applied Geothermics - M-BGU-102447	
	6.3. Applied Mineralogy: Clay Science - M-BGU-102444	
	6.4. Applied Mineralogy: Geomaterials - M-BGU-102430	
	6.5. Applied Mineralogy: Petrophysics - M-BGU-102443	
	6.6. Borehole Technology - M-BGU-102449	
	6.7. Diagenesis and Cores - M-BGU-103734	
	6.8. Earthworks and Foundation Engineering [bauiM5P2-ERDGB] - M-BGU-100068	
	6.9. Electron Microscopy I - M-PHYS-103760	
	6.10. Electron Microscopy II - M-PHYS-103761	
	6.11. Engineering Geology: Laboratory and Field Methods - M-BGU-102434	
	6.12. Engineering Geology: Mass Movements and Modelling - M-BGU-102442	
	6.13. Environmental Geology: Radio- & Chemotoxic Elements - M-BGU-102455	27
	6.14. Environmental Geotechnics [bauiM5S09-UMGEOTEC] - M-BGU-100079	
	6.15. Environmental Mineralogy - M-BGU-104466	
	6.16. Field Excercises / Excursion - M-BGU-102456	
	6.17. Geochemical Processes and Analytical Methods - M-BGU-103995	
	6.18. Geological Mapping and Processing of Geospatial Data - M-BGU-102437	
	6.19. Geological Storage of Gas - M-BGU-102445	
	6.20. Geology - M-BGU-102431	
	6.21. Geotechnical Engineering [bauiBFP7-GEOING] - M-BGU-103698	
	6.22. Geothermal Reservoir Engineering - M-BGU-105136	
	6.23. Geothermics: Energy and Transport Processes - M-BGU-102432	
	6.24. Ground Water and Earth Dams [bauiM5S04-GWDAMM] - M-BGU-100073	
	6.25. Hydrogeology: Field and Laboratory Methods - M-BGU-102441	
	6.26. Hydrogeology: Groundwater Modelling - M-BGU-102439	
	6.27. Hydrogeology: Karst and Isotopes - M-BGU-102440	
	6.28. Hydrogeology: Karst and Isotopes (with Field Trip) - M-BGU-105150	
	6.29. Hydrogeology: Methods and Applications - M-BGU-102433	
	6.30. Industrial Minerals and Environment - M-BGU-103993	
	6.31. Internship - M-BGU-103996	
	6.32. Introduction to Ceramics - M-BGU-105222	
	6.33. Mineral Exploration - M-BGU-105357 6.34. Mineral Materials - M-BGU-102453	
	6.35. Module Master Thesis - M-BGU-102453	
	6.36. Numerical Methods in Geosciences - M-BGU-102436	
	6.37. Ore Geology of Metals - M-BGU-103994	
	6.38. Petrology - M-BGU-102452	
	6.39. Physical Chemistry for Applied Geosciences - M-CHEMBIO-104581	
	6.40. Project Study - M-BGU-102438	
	6.41. Reservoir-Geology - M-BGU-103742	
	6.42. Rock Mechanics and Tunneling [bauiM5P3-FMTUB] - M-BGU-100069	
	6.43. Sedimentary Petrology - M-BGU-103733	
	6.44. Structural and Phase Analysis - M-BGU-105236	
	6.45. Structural Ceramics - M-BGU-105223	
	6.46. Structural Geology - M-BGU-102251	
	6.47. Thermal Use of Groundwater - M-BGU-103408	
	6.48. Urban Ecology [E13] - M-BGU-101568	
	6.49. Water and Energy Cycles [bauiM2P8-WATENCYC] - M-BGU-103360	

6.51. Water Technology - M-CIWVT-103407	
ourses	
7.1. Advanced Analysis in GIS - T-BGU-101782	
7.2. Advanced Clay Mineralogy - T-BGU-104840	
7.3. Applied Geothermics - T-BGU-108017	
7.4. Applied Geothermics - Excursion - T-BGU-108018	
7.5. Applied Mineralogy: Geomaterials - T-BGU-104811	
7.6. Borehole Technology - T-BGU-104851	
7.7. Brownfield Sites - Investigation, Evaluation, Rehabilitation - T-BGU-100089	
7.8. Clay Mineralogy Introduction - T-BGU-104839	
7.9. Diagenesis - T-BGU-107559	
7.10. Earthworks and Foundation Engineering - T-BGU-100068	
7.11. Electron Microscopy I - T-PHYS-107599	
7.12. Electron Microscopy II - T-PHYS-107600	
7.13. Engineering Geologie: Laboratory and Field Methods - T-BGU-104814	
7.14. Engineering Geology: Mass Movements - T-BGU-110724	
7.15. Engineering Geology: Modelling - T-BGU-110725	
7.16. Environmental Geology: Radio- & Chemotoxic Elements - T-BGU-107560	
7.10. Environmental Mineralogy - T-BGU-109325	
7.18. Field Course Applied Structural Geology - T-BGU-107508	
7.10. Field Excercise / Excursion - T-BGU-104878	
7.19. Field Excercise / Excursion - 1-bG0-104078	
7.20. Field Trip Karst Hydrogeology - T-BGU-107035	
7.21. Field The Karst Hydrogeology - 1-660-110413	
7.23. Geological Mapping and Processing of Geospatial Data - T-BGU-104819	
7.24. Geological Storage of Gas - T-BGU-104841	
7.25. Geology - T-BGU-104812	
7.26. Geotechnical Engineering - T-BGU-107465	
7.27. Geothermal Reservoir Engineering - Seminar - T-BGU-110428	
7.28. Geothermal Reservoir Engineering - Topics - T-BGU-110427	
7.29. Geothermics: Energy and Transport Processes - T-BGU-104813	
7.30. Ground Water and Earth Dams - T-BGU-100091	
7.31. Hydrogeology: Field and Laboratory Methods - T-BGU-104834	
7.32. Hydrogeology: Groundwater Modelling - T-BGU-104757	
7.33. Hydrogeology: Karst and Isotopes - T-BGU-104758	
7.34. Hydrogeology: Methods and Applications - T-BGU-104750	
7.35. Industrial Minerals and Environment - T-BGU-108191	
7.36. Internship - T-BGU-108210	
7.37. Introduction to Ceramics - T-MACH-100287	
7.38. Introduction to Project Management - T-BGU-107639	
7.39. Laboratory Work in Physical Chemistry - T-CHEMBIO-109395	
7.40. Landfills - T-BGU-100084	
7.41. Master Thesis - T-BGU-107516	
7.42. Microstructures - T-BGU-107507	
7.43. Mineral and Rock Physics - T-BGU-104838	
7.44. Mineral Exploration - T-BGU-110833	
7.45. Mineral Materials - T-BGU-104856	
7.46. Numerical Methods in Geosciences - T-BGU-104816	
7.47. Ore Geology of Metals - T-BGU-109345	
7.48. Petrology - T-BGU-104854	
7.49. Physical Chemistry - T-CHEMBIO-103385	
7.50. Project Study - T-BGU-104826	
7.51. Radiogeochemical Field Excercise and Seminar - T-BGU-107623	
7.52. Reservoir-Analogs and Core Description - T-BGU-107624	
7.53. Reservoir-Geology - T-BGU-107563	
7.54. Rock Mechanics and Tunneling - T-BGU-100069	
7.55. Sedimentary Petrology - T-BGU-107558	
7.56. Structural and Phase Analysis - T-MACH-102170	
7.57. Structural Ceramics - T-MACH-102179	
7.58. Student Research Project 'Earthworks and Foundation Engineering' - T-BGU-100178	
7.59. Student Research Project 'Rock Mechanics and Tunneling' - T-BGU-100179	

7.60. Thermal Use of Groundwater - T-BGU-106803	130
7.61. Urban Ecology - T-BGU-103001	131
7.62. Urban Ecology Lecture - T-BGU-106684	
7.63. Urban Ecology Practical Course - T-BGU-106685	133
7.64. Water and Energy Cycles - T-BGU-106596	134
7.65. Water Chemistry and Water Technology - T-CIWVT-107585	135
7.66. Water Technology - T-CIWVT-106802	

1. Welcome to the New Module Handbook

We are delighted that you have decided to start the Master's Degree Program "Applied Geosciences at the KIT-Department of Civil Engineering, Geo and Environmental Sciences and wish you a good start into the new semester!

The following contact persons are at your disposal for questions and problems.

Dr. Ruth Haas Nüesch Mirja Lohkamp-Schmitz

Study program coordination Building 50.40, Room 122 Phone +49 721 608 44172 ruth.haas@kit.edu Principal Contact Person for Students coordination of exams / courses and field trips consulting ours: Tue + Thu 9 – 12 am Building 50.40, Room 117 Phone +49 721 608 43316 Fax +49 721 608 43374 mirja.lohkamp-schmitz@kit.edu

2. Qualification Goals of the Master's Degree Program "Applied Geosciences" at KIT

Applied Geosciences continuously contribute to the development of KIT in research and teaching since its establishment in 1825. At the oldest University of Technology in Germany, we deal with the sustainable utilization of geo-resources on and below the earth's surface.

You at KIT!

Whether renewable energies, climate protection, water or raw materials for batteries and solar systems - Are you interested in the sustainable use of resources? We at KIT, an awarded University of Excellence, are one of the few Applied Geoscience Institutes in Germany that occupy top positions in international rankings. You will get an excellent training and get to know your lecturers personally at one of the largest technical research institutions in Europe. Karlsruhe, one of the sunniest cities in southwestern Germany, offers you a high quality of life in one of the economically strongest regions in Europe. Together we develop sustainable solutions for the global challenges!

Our profiles in the Master's degree in Applied Sciences @KIT

Our MSc degree program Applied Geosciences offers three profiles: Energy, Resources & Storage (ERS), Hydrogeology & Engineering Geology as well as Mineralogy & Geochemistry (MiG). Alternatively, you can choose your modules freely from different profiles. The ERS profile can be studied entirely in English.

Our MSc Profile Energy, Resources & Storage - ERS

You deal with the sustainable use of Geo-Energy, Geo-Resources and Raw Materials, and acquire a deep understanding of major infrastructure developments such as Geo-Storage. You can supplement your broad geoscientific understanding in ERS with in-depth knowledge of groundwater and tunnel construction. You acquire applied specialist knowledge with a strong practical relevance, at the same time you learn to deal with unknown problems.

We teach what we research and research what we teach:

• in GeoEnergy for the generation of geothermal energy, fossil and chemical energy sources such as hydrogen for the expansion of climate-friendly energies,

- in Raw Materials to increase security of supply and raw material transparency (metals, minerals and water) for the expansion of renewable energies, battery storage and industrial products,
- in Large Infrastructures such as GeoStorage for heat, cooling, chemical energy sources, hydropower, greenhouse gases (CCS), repositories and other subsurface designs.

Your future

Your commitment and our hands-on approach qualify you for jobs in industry, the service sector, in public administration, and for a scientific career (doctorate). The University of Excellence KIT, its excellent research infrastructure in the Helmholtz Association and our involvement in the engineering faculty of civil engineering-, geo- and environmental sciences enable you to shape your future.

3. About this Handbook – Notes and Rules

- 3.1. Structure of the MSc program
- 3.2. Course Types
- 3.3. The Module Handbook
 - 3.3.1. Beginning and completion of a module
 - 3.3.2. Module and partial performance versions
 - 3.3.3. First use
 - 3.3.4. General or partial examinations
 - 3.3.5. Types of examinations
 - 3.3.6. Repetition of exams
 - 3.3.7. Additional modules and courses
- 3.4. Further information

3.1 Structure of the MSc program

Our two-year MSc program has a workload of 120 credit points (CPs / ETCS) with usually 30 CP per semester. Choose one of the three profiles (i) Energy, Resources & Storage, (ii) Hydrogeology - Engineering Geology, (iii) Mineralogy - Geochemistry, or choose the elective modules according to your interests. In addition to your courses of 90 CPs, you will complete your master's thesis of 30 CP at the end of your studies. One CP corresponds to about 30 working hours and is subdivided into contact time and self-study time. The program consists of a compulsory part with 19 CPs and an elective part of 71CP. The elective part is tripartite (core competencies, deepening geosciences, subject-related additions). The modules consist of assigned courses with CPs corresponding to the workload.

3.2 Course types

The master's degree is taught through the following teaching and learning forms:

- Lectures (V)
- Practicals (Ü)
- Seminars and field seminars (S and GEL)
- Internships (P)
- Excursions (E)
- Project study, internship, colloquia, tutorials (TU), master thesis

In lectures, content is mainly conveyed through presentations by the lecturers. In practical courses, the exercises are done by the students with intensive supervision. In seminars, teaching is conveyed in small groups. This also includes geological seminars in rough terrain. The seminars focus on lectures by students and discussions in which special topics are discussed scientifically. Internships deepen previously acquired theoretical knowledge in practical application or gain new experience and skills through practical work individually or as part of a group. Excursions are educational trips to selected destinations such as industrial visits. Colloquia are special events, often held by academic guests, which consist of a lecture and discussion section and in which the students should take part. In the project study, the students work on a geoscientific question individually or in a group under the guidance of lecturers.

As part of the master's thesis, the specialist knowledge acquired is applied to an applied geoscientific question. The work is supervised by lecturers, but is intended to demonstrate the ability to independently work on, present and solve geoscientific problems.

3.3 The module handbook

The module handbook describes the modules of the study program. It describes

• courses within each of the modules (item of work),

- size of the modules (in CP),
- interdependencies between different modules,
- qualification goals of the modules,
- type of examination and
- formation of the grade for a module.

The module handbook does not replace the university calendar, which currently provides information about the variable dates (e.g. time and place of the course) every semester

3.3.1. Beginning and completion of a module

Each module and each course (partial achievement) within a module can only be chosen once. The performance is proven by a module examination or by examination of courses within the module. A successful pass of a module or course is either a passed examination (graded or ungraded) or an ungraded coursework with the student's participation. A module is completed or passed if the module examination has been passed (grade at least 4.0). For modules in which the pass of a module is carried out as examination of individual courses within a module, the following applies: The module is completed when all the required courses (partial achievements) of a module have been passed. The module grade is usually weighted with the predefined credit points for each course (partial achievement) within the module. An exception is the master thesis module, which is included in the master grade with a 1.5-fold weighting of the CPs

3.3.2. Module and partial performance versions

A new module or a new course performance version is created if the content or CPs of modules / new courses change. All students who have already successfully completed a course performance enjoy the protection of trust and can complete the old module under the same conditions under which they registered (exceptions are regulated by the examination board). This is based on the time when the "binding declaration" about the choice of module has been taken by the student according to §5 (2) of the study and examination regulations. This binding declaration is taken when a student registers for the first exam in this module. At the written request of the student to the examination board, the assignment of the additional module to the regular curriculum can be changed afterwards. In the current module handbook, the modules and courses are presented in their current version. The version number is given in the module description. Older module versions are available in the previous module manuals at https://www.agw.kit.edu/11368.php

3.3.3. First use

The so-called "first use" (EV) indicates from / until when a course- or module version can be selected in the study schedule. Modules with a date of first use are highlighted in the chapter "Structure of the course".

3.3.4. General and partial examination

Module examinations can be overall or partial examinations. If the module examination is offered as an overall examination, the entire content of the module is examined at one date. If the module examination is subdivided into partial examinations, the module examination consists of individual examinations (partial achievements) of the associated courses. You must register for the respective exams online via the Campus Management Portal at <u>https://campus.studium.kit.edu</u>

3.3.5. Types of examinations

- Graded exams: written exams, oral exams and examinations of another type (e.g. reports, seminar lectures or the submission of a laboratory or field book).

- Ungraded coursework: can be repeated several times. The passed performance is shown as "passed".

3.3.6. Repetition of exams

Anyone who does not pass a written exam, oral exam or examination of another type can repeat the exam once. If the reexamination (for written exams including an additional oral exam) is also not passed, the right to take the exam for the respective module in the study program is lost. A possible application for a second re-examination (hardship application) has to be submitted to the Examination Board in writing the latest two months after the examination claim is lost.

3.3.7. Additional modules and courses

Students can take voluntary, additional modules or courses with a maximum of 30 CP from KIT's lectures. Such modules or courses can be included in the certificate at the request of the student to the examination board. The result of the additional modules or courses is not taken into account for the degree in the degree program and therefore not for the overall grade. Students will claim an additional module or course when they register for the exam in such additional module or course. At the written request of the student to the examination board, the assignment of the additional module to the regular curriculum can be changed afterwards. More information is given in the http://www.agw.kit.edu/downloads/Studiengang/2016 AB 010.pdf

3.4 Further information

All information about the legal and official conditions for your studies is given in the relevant study and examination regulations for the respective degree program. This legally binding information is available under the official announcements of the KIT (<u>http://www.sle.kit.edu/amtlicheBekanntmachungen.php</u>) and at http://www.sle.kit.edu/amtlicheBekanntmachungen.php) and at

4. Overview of the MSc profile Energy, Resources & Storage

0	Module n Course na	me	D - German, E - English, Ex - Excursion, L - Lecture, P - Pra FB - submission of field book, N -No Exam, OE - Oral Exa						m, WR -W	ritten Rep	oort	
summer term	winter tem	recommended semester	module/course	language of instruction	type	contact hrs (SWS)		СР	self-study time (hr)	type of exam	lecturer	course number
L.1 Maste	er Thesis											
v		4	Module Master Thesis				30			WR	2014	M-BGU-10372
x			Master thesis							WK	any	
L2 Comp	ulsary Mo	dules (at l	east 14CP) Numerical Methods in Geosciences				6					
	x	1	Numerical Methods Computer Lab	E	LP	4	0	6	120	WE	Kohl/Gaucher	M-BGU-10243
			Geological Mapping and Processing of Geospatial Data				8				Drüppel	M-BGU-10243
х		2	Processing of Geospatial Data	D,E	Р	2	_	2	30	N	Menberg	631039
х		2	Advanced Geological Mapping (field course)	D,E	GEL	8		6	60	WR	Drüppel, (Grimm	631040
.2 Projec	ct Study or	Internshi	p (1 item)									
			Internship OR				5			WR		M-BGU-10399
Х	x	2	Internship	D,E	Р			5	150	WR	company	
			Project Study	_		-		5			Blum	M-BGU-10243
x	x	2	Project Study Introduction to Project Management	E	P S	0		4,5 0,5	135 0	WR N	Blum Hilgers, Busch	633908 633908
x		2						0,5	0	IN	nigers, busch	055900
.2 Electiv	ve module	s (Core El	PROFILE Energy ectives - 36 + Electives 1 - 25 + Electives 2 - 10 CP = Total at	•		rage						
			Borehole Technology				5				Kohl	M-BGU-10244
х		1	Drilling	E	LP	2		3	60	WE	Müller, Kohl, Gau	631042
X		1	Borehole-Technology I (Logging) /Logging	E	LP	2		2	30		Kohl, Gaucher	633909
			Applied Mineralogy: Clay Science				5					M-BGU-102444
x		1	Clay Mineralogy Introduction	E	LP P	2		3	60 30	WE WR	Emmerich	633908
x		1	Anwendung von Tonen und Laboreinführung	E	P	2	-	Z	30	WR	Emmerich	631043
	x	1	Geothermics: Energy and Transport Processes Energy Budget of the Earth	E	L	2	5	1.5	15	WR	Schilling	M-BGU-10243 633909
	x	1	General Geothermics	E	L	2		3	60	WE	Kohl	633909
	x	1	General Geothermics Field Exercises	E	Ex	1		0,5	0	WR	Kohl	633909
			Geology				5				Hilgers	M-BGU-10243
	x	1	Analysis of Geological Structures	E	LP	3		3	45	WE	Hilgers	633908
	х	1	Depositional Systems	E	LP	1		2	45	VVL	Hilgers	633908
			Industrial Minerals and Environment				5				Kolb	M-BGU-10399
	x	1	Industrial Minerals	E	LP	2		2	30	WR	Kolb, Patten	631012
	x	1	Environmental Aspects of Mining	D,E E	L GEL	1		1	15 37,5	WR	Eiche	633909
	x	1	Fieldtrip Industrial Minerals (2.5 days)	E	GEL	2	_	2	37,5	WR	Kolb, Patten	
x		2	Applied Geothermics Applied Geothermics	E	LP	2	5	4	90	WE	Kohl Kohl	M-BGU-10244 631042
x		2	Applied Geothermics	E	E	1		4	30 15	WR	Kohl	631042
		_	Geological Storage of Gas	-			5				Schilling	M-BGU-10244
x		2	Geological Storage of Gas	E	L	2	5	2	30		Schilling	633909
х		2	Fundamentals of Reservoir Geomechanics	E	LP	2		3	60	PR	Schilling, Müller	633909
			Applied Mineralogy: Petrophysics				5				Schilling	M-BGU-10244
х		2	Petrophysik II	E	L	3		2	15	PR	Schilling	631042
х		2	Petrophysik II	E	Р	1		3	75	WE	Schilling	631042
			Structural Geology				5				Kontny	M-BGU-10245
x	<u> </u>	2	Microstructures	E	LP GEL	2		2	30	PR FB + PR	Kontny	633908 631040
x		Z	Field Course (e.g. Pyrenees, Spain, 5 days)	E	GEL	4	_	3	45	FB + PK	Kontny	
		3	Diagenesis and Cores Diagenesis (3 days)	E	S	2	5	3	60		Hilgers Busch, Felder, Hi	M-BGU-10373 633907
	x x	3	Reservoir-Analogs and Core Description (3 days)	E	S	2		2	30	WR	Schmidt, Busch, H	633907
	1		Field Excercises / Excursion				5	_			Zeh	M-BGU-10245
x	x	3 or 2	(Field trip / Große Exkursion) 10 days	E	GEL	8	5	5	60	WR	varying	IVFB00-10243
			Environmental Geology: Radio- & chemotoxic elements				5				Heberling	MBGU-10245
	x	3	Environmental Geology: Radio- & Chemotoxic Element		L	2		3	60	WE	Heberling	633908
	x	3	Radiogeochemical Field Exercise and Seminar	E	Е	2		2	30	WR	Heberling	633908
			Ore Geology of Metals				5				Kolb	M-BGU-10399
	x	3	Ore forming processes	E	LP	3		3	45	OE	Kolb, Patton	633909
	х	3	Fieldtrip Ore Geology (2 days)	E	GEL	2		2	37,5	WR	Kolb, Patton	
			Geothermal Reservoir Engineering				5				Kohl	M-BGU-10513
	x	3	Reservoir Engineering - Topics	E	L			3	90	WE	Gaucher, Kohl	633911
	x	3	Geothermal Reservoir Engineering - Seminar	E	S			2	60	OE	Gaucher, Kohl	633911
			Sedimentary Petrology				5				Zeh	M-BGU-10373

Aution			Hydrogeology: Methods and Applications					7			Goldscheider	M-BGU-102433
x			Hydrogeology. Methoden	D	LP	1,5		/			Liesch	6339081
	x		Angewandte Hydrogeologie	D	LP	2				WE	Goldscheider, Gö	
	x		Regionale Hydrogeologie	D	LP	1,5					Goldscheider, Gö	
	X		negionale nyarogeologie	U	-	1,5	-				Goldsenender, Ge	0335007
			Engineering Geology: Laboratory and Field Methods					7			Blum	M-BGU-102434
x			Ingenieurgeologisches Geländepraktikum	D	Р	3				05.140	Blum	6310404
	х		IngenieurgeologischesLaborpraktikum	D	Р	2				OE, WR	Menberg, Blum,	6339112
			Hydrogeology: Karst and Isotopes					5			Goldscheider	M-BGU-102440
x		1	Isotopenmethoden in der Hydrogeologie	D	LP	1				WE	Himmelsbach	6310411
	х		Karsthydrogeologie	D	LP	2				WE	Goldscheider	6339076
		2/			2.51							
аке тгоп	l Electives	z (specifi	c supplements) - 10 CP (fachbezogene Ergänzungen) or f Advanced Analysis in GIS	rom list I	.2 Electiv	ves above	4				Breunig	M-BGU-101053
x		2	Advanced Analysis in GIS	E	LP	2	4	4	90	OE	Breunig	W-BG0-101053
^		2	, , , , , , , , , , , , , , , , , , ,	_ <u>_</u>	-	4	-		50		0	
		4//2	Earthworks and Foudation		10	-		6			N.N.	MBGU-100068
	x	1//3	Foundation Types Basics in Earthworks and Embankment Dams	D	LP LP	2		2		WE	N.N.	6251701
	x	1//3		D	LP	2		2		N	Bieberstein, NN	6251703
	x	1//3	Student Research Project	U				2		N	ININ	T-BGU-100178
			Environmental Geotechnics					6				M-BGU-100079
	х	1//3	Landfills	D	LP	2		3		OE	Bieberstein	6251913
	х	1//3	Brownfield sites	D	L	2		3		OE	Bieberstein	6251915
			Geotechnical Engineering					11			NN	M-BGU-103698
х		2	Basics in Soil Mechanics	D	L	2					Triantafyllidis	6200415
х		2	Exercises to Basics in Soil Mechanics	D	Р	2					Triantafyllidis	6200416
х		2	Tutorials to Basics in Soil Mechanics	D	TU	2				WE	Staff	6200417
	х	1//3	Basics in Foundation Engineering	D	L	2					Kudella	6200515
	х	1//3	Exercises to Basics in Foundation Engineering	D	Р	2					Kudella	6200516
	х	1//3	Tutorials to Basics in Foundation Engineering	D	TU	2					NN	6200517
			Rock Mechanics and Tunneling					6			N.N.	MBGU-100069
х		2	Basics in Rock Mechanics	D	LP	2		5		WE	N.N.	6251804
х		2	Basics in Tunnel Construction	D	LP	2		,		VVL	Wagner	6251806
		2	Student Research Project	D			1	1		Ν	N.N.	T-BGU-100179

Additional Electives 1 (language of instruction is German):

The CP provide information about the workload to be performed by the students.

1 CP = 30 hours.

In the module handbook itself, the CPs can only be displayed in whole numbers, in this table they are also given in 0.5 steps according to the real workload.

5 Field of study structure

Mandatory				
Master Thesis	30 CR			
Key Competences in Geosciences	55 CR			
Specialization in Geosciences	25 CR			
Specific Supplements	10 CR			

5.1 Master Thesis

Mandatory		
M-BGU-103726	Module Master Thesis	30 CR

Modelled Conditions

The following conditions have to be fulfilled:

- You need to earn at least 70 credits in the following fields:

 Specific Supplements
 Key Competences in Geosciences
 Specialization in Geosciences

5.2 Key Com	petences in Geosciences	Credits 55		
Election block: Compulsory Modules (at least 14 credits)				
M-BGU-102436	Numerical Methods in Geosciences	6 CR		
M-BGU-102437	Geological Mapping and Processing of Geospatial Data	8 CR		
Election block: Project Study or Internship (1 item)				

Election block: F	roject Study or Internship (1 item)	
M-BGU-103996	Internship	5 CR
M-BGU-102438	Project Study	5 CR
Election block: C	Compulsory Elective Modules (at least 36 credits)	
M-BGU-102430	Applied Mineralogy: Geomaterials	5 CR
M-BGU-102431	Geology	5 CR
M-BGU-102432	Geothermics: Energy and Transport Processes	5 CR
M-BGU-102433	Hydrogeology: Methods and Applications	7 CR
M-BGU-102434	Engineering Geology: Laboratory and Field Methods	7 CR
M-BGU-102440	Hydrogeology: Karst and Isotopes	5 CR
M-BGU-103742	Reservoir-Geology	5 CR
M-BGU-103733	Sedimentary Petrology	5 CR
M-BGU-102445	Geological Storage of Gas	5 CR
M-BGU-103993	Industrial Minerals and Environment	5 CR
M-BGU-102442	Engineering Geology: Mass Movements and Modelling	5 CR
M-BGU-103994	Ore Geology of Metals	5 CR
M-BGU-103995	Geochemical Processes and Analytical Methods	5 CR
M-BGU-105150	Hydrogeology: Karst and Isotopes (with Field Trip) neu	7 CR

Credits 30

5.3 Specialization in Geosciences

Credits 25

Election block: Com	oulsory Elective Modules (at least 25 credits)	
M-BGU-102439	Hydrogeology: Groundwater Modelling	5 CR
M-BGU-102440	Hydrogeology: Karst and Isotopes	5 CR
M-BGU-102441	Hydrogeology: Field and Laboratory Methods	5 CR
M-BGU-102442	Engineering Geology: Mass Movements and Modelling	5 CR
M-BGU-102443	Applied Mineralogy: Petrophysics	5 CR
M-BGU-102444	Applied Mineralogy: Clay Science	5 CR
M-BGU-102445	Geological Storage of Gas	5 CR
M-BGU-102447	Applied Geothermics	5 CR
M-BGU-105136	Geothermal Reservoir Engineering	5 CR
M-BGU-102449	Borehole Technology	5 CR
M-BGU-102451	Structural Geology	5 CR
M-BGU-102452	Petrology	5 CR
M-BGU-102455	Environmental Geology: Radio- & Chemotoxic Elements	5 CR
M-BGU-102456	Field Excercises / Excursion	5 CR
M-BGU-103733	Sedimentary Petrology	5 CR
M-BGU-103734	Diagenesis and Cores	5 CR
M-BGU-103742	Reservoir-Geology	5 CR
M-BGU-102453	Mineral Materials	5 CR
M-BGU-103993	Industrial Minerals and Environment	5 CR
M-BGU-104466	Environmental Mineralogy	5 CR
M-BGU-103994	Ore Geology of Metals	5 CR
M-BGU-103995	Geochemical Processes and Analytical Methods	5 CR
M-CHEMBIO-104581	Physical Chemistry for Applied Geosciences	13 CR
M-BGU-105357	Mineral Exploration neu First usage possible from 4/1/2020.	5 CR

5.4 Specific Supplements

Credits 10

Election block: Co	Election block: Compulsory Elecitve Modules (at least 10 credits)				
M-BGU-100068	Earthworks and Foundation Engineering	6 CR			
M-BGU-100069	Rock Mechanics and Tunneling	6 CR			
M-BGU-100079	Environmental Geotechnics	6 CR			
M-PHYS-103760	Electron Microscopy I	5 CR			
M-PHYS-103761	Electron Microscopy II	5 CR			
M-CIWVT-103753	Water Chemistry and Water Technology	10 CR			
M-BGU-100073	Ground Water and Earth Dams	6 CR			
M-BGU-103698	Geotechnical Engineering	11 CR			
M-CIWVT-103407	Water Technology	6 CR			
M-BGU-101568	Urban Ecology	12 CR			
M-BGU-101053	Advanced Analysis in GIS	4 CR			
M-BGU-103408	Thermal Use of Groundwater	4 CR			
M-BGU-105223	Structural Ceramics neu First usage possible from 4/1/2020.	4 CR			
M-BGU-105236	Structural and Phase Analysis neu	4 CR			
M-BGU-105222	Introduction to Ceramics neu	6 CR			
M-BGU-103360	Water and Energy Cycles neu	6 CR			

6 Modules

Competence Certificate

The assessment consists of an oral exam (20 min.)

Competence Goal

The students explain the advanced concepts of spatial analysis and 2D interpolation procedures. Especially the different aspects of statistical reasoning are analyzed. They can categorize all analysis problems with spatial background and estimate possible solutions.

Module grade calculation

The grade of the module is the grade of the oral exam.

Prerequisites

None

Content

After an introduction to analysis in GIS in general, this lecture is dealing with the specific approaches of statistical analysis of spatial data. Among them, in particular, the different methods of pattern analysis. This also encompasses the test strategies inherent to the aforementioned methods. Another topic is data mining, which is introduced as an extension of the point pattern analysis. Furthermore the 2D interpolation procedures are discussed (e. g. Natural Neighbor Interpolation, Kriging, ...).

Workload

Contact hours: 30 hours

· courses plus course-related examination

Self-study: 90 hours

- · consolidation of subject by recapitulation of lectures
- · processing of exercises
- · consolidation of subject by use of references and by own inquiry

preparations for exam

6.2 Module: Applied Geothermics [M-BGU-102447] Μ

Responsible:	Prof. Dr. Thomas Kohl
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Specialization in Geosciences

Credits	Recurrence	Language	Level	Version
5	Each summer term	English	4	2

Mandatory				
T-BGU-108017	Applied Geothermics	4 CR	Kohl	
T-BGU-108018	Applied Geothermics - Excursion	1 CR	Kohl	

Competence Certificate

The assessment consists of a written exam (45min) according to §4 (2) of the examination regulations and a non-assessed coursework (participation in field trip and report), see §4 (3) of the examination regulations.

Competence Goal

- The students develop shallow and deep geothermal projects with cost estimates
- The students are able to explicate examples and case studies in theory and practice -

Prerequisites none

Content

- Introduction into geothermal utilization
- Hydrothermal and enhanced (or engineered) geothermal systems (EGS)
- Stimulation methods -
- **Geothermal Exploration** -
- _ Thermodynamics and power plant processes
- Shallow geothermics -
- Examples _

Annotation

The date for the excursion and the closing date for the excursion report will be promptly announced.

6.3 Module: Applied Mineralogy: Clay Science [M-BGU-102444]

Responsible:	Dr. Katja Emmerich
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Specialization in Geosciences

Credits	Recurrence	Language	Level	Version
5	Each winter term	English	4	1

Mandatory				
T-BGU-104839	Clay Mineralogy Introduction	3 CR	Emmerich	
T-BGU-104840	Advanced Clay Mineralogy	2 CR	Emmerich	

Competence Certificate

The assessment consists of a written exam (Clay Mineralogy Introduction, 90 min) according to §4 (2) of the examination regulations and an examination of another type (Advanced Clay Mineralogy, graded report, ca. 12 pages, submission till 4 weeks after the end of the lecture period).

Module grade calculation

grade of the module is CP weighted average of grades of the partial exams

Prerequisites None

Annotation

Depending on the auditorium, this module is held in German or English

Workload contact hours: 60 self study time: 90

Competence Certificate

The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations.

Prerequisites

keine

6.5 Module: Applied Mineralogy: Petrophysics [M-BGU-102443] Μ **Responsible:** Prof. Dr. Frank Schilling **Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: Specialization in Geosciences Credits Recurrence Language Level Version Each summer term 5 English 5 1 Mandatory T-BGU-104838 **Mineral and Rock Physics** 5 CR Schilling

Competence Certificate

The assessment consists of an examination of another type (a combination of oral contributions and a written assignment) according to §4 (2) of the examination regulations.

Prerequisites

none

Annotation

Depending on the auditorium, this module is held in German or English

In Abhängigkeit vom Auditorium wird dieses Modul in deutscher oder englischer Sprache gehalten

6.6 Module: Borehole Technology [M-BGU-102449] Μ Prof. Dr. Thomas Kohl **Responsible:** Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: Specialization in Geosciences Credits Recurrence Language Level Version 5 Each term English 4 1 Mandatory T-BGU-104851 5 CR Kohl

Competence Certificate

The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations. The oral presentation in the seminar is included in the grade of the written exam.

Competence Goal

- The students are able to characterize reservoirs from logging data.

Borehole Technology

- The students are able to explain the basics of different drillhole technologies and are able to present results graphically and to evaluate and present them scientifically.

Prerequisites

none

Content

Logging

- Introduction into petrophysics, parameter
- Distribution of fluid/rock parameter around a drillhole
- Wireline logging
- Archie's law
- Active/passive logs (resistivity, induction, sonic, SP, nuclear methods, imaging)
- Examples of application

Driling

- Rig installation / rotary drilling method
- Drilling mud circulation
- Measurement while drilling (MWD)
- Logging while drilling (LWD)
- Well completion
- Examples of application

6.7 Module: Diagenesis and Cores [M-BGU-103734]

Responsible:	Prof. Dr. Christoph Hilgers
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Specialization in Geosciences

Credits	Recurrence	Language	Level	Version
5	Each winter term	English	5	1

Mandatory				
T-BGU-107559	Diagenesis	3 CR	Hilgers	
T-BGU-107624	Reservoir-Analogs and Core Description	2 CR	Hilgers	

Competence Certificate

The assessment consists of partial exams according to §4 (2) of the examination regulations.

It consists of two examinations of another type:

1. Diagenesis: Examination: Report (5 p.) on own practical microscopic analysis (4h on the day after the end of the course): petrographic description of sedimentary clastic rock and interpretation, raw data and thin section images. Submission: 2 weeks after end of course.

2. Reservoir-Analogs and Core Description: Report (1 page) and digitized core description plus written notes. Submission 2 weeks after end of course.

Competence Goal

- After this course students will be able to apply a workflow of petrographic analyses especially of sediments (description, quantification etc.), sandstone- and carbonate classification, provenance, evaluation of reservoir characteristics and diagenetic processes. They can critically assess data for sampling campaigns.
- After this course students are enabled to describe reservoir rocks in the field and in cores according to industry standards. They derive facies models and integrate data into state-of the art software.

Prerequisites

participation in the module Reservoir-Geology

Content

- Petrography, rock typing and reservoir quality: granulometry, texture and fabric, porosity and porosity loss, primary and secondary porosity, compaction vs. cementation, identification of detrital grains, sandstone classification, intra- and extraclasts, provenance, authigenic mineralogy, quantification via estimation and point counting, sandstone diagenesis, paragenetic sequence and stages of diagenesis, diagenetic processes, geological control factors and burial history, structural diagenesis
- · Description of reservoir- and source rocks as well as seals from analogs in the field and reservoir rocks from cores

Recommendation

The student shall have a basic knowledge of reservoir geology

Literature

Literature "Diagenesis": Burley, S., Worden, R. (2003): Sandstone diagenesis: recent and ancient. – 656 S, Wiley-Blackwell. Tucker, M.E. (2011): Sedimentary Petrology.- 3. edn, 262 S., Oxford (Blackwell). Literature "Reservoir-analogs and core description": James, N.P., Dalrymple, R.W. 2010. Facies models. Kupecz, by J.A. Gluyas J. Bloch S. (eds) 1997 Reservoir quality prediction in sandstones and carbonates, AAPG Memoir 69.

6.8 Module: Earthworks and Foundation Engineering (bauiM5P2-ERDGB) [M-BGU-100068]

Responsible: Organisation: Part of:

N.N.

KIT Department of Civil Engineering, Geo- and Environmental Sciences Specific Supplements

Mandatory					
T-BGU-100068	Earthworks and Foundation Engineering	4 CR	N.N.		
T-BGU-100178	Student Research Project 'Earthworks and Foundation Engineering'	2 CR	Bieberstein, N.N.		

Competence Certificate

- 'Teilleistung' T-BGU-100178 with not graded accomplishment according to § 4 Par. 3

- 'Teilleistung' T-BGU-100068 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Competence Goal

With regard to geotechnical constructions the students are able to select and apply appropriate methods for exploration, modelling, dimensioning, realization and control in the case of complex requirements on average. They can apply this knowledge to earthworks and embankment engineering, can identify all geotechnically relevant problems occurring with dams and can apply self-reliantly design and dimensioning rules in outline. They gained geotechnical competence in solving problems for all kind of constructions in and with unconsolidated rocks, also with respect to the managerial organization, expense budgeting, use of documents and presentation of results.

Module grade calculation

grade of the module is grade of the exam

Prerequisites

none

Content

The module deepens the safety concepts in earthworks and foundation engineering and the project design for foundation problems by means of several examples (foundations on soft soil, variants of construction pit supporting system, stabilization and drainage of embankments, slope stabilization, retaining structure, underpinning) and explains the observation method. Basics of earthworks and foundation engineering are presented such as building materials for dams, design requirements, construction of dams, sealing and stability of filled dams. Further basics are computation of seepage and the evaluation of erosion, suffosion, piping, colmatation and joint erosion.

Recommendation

basic knowledge of Soil Mechanics and Foundation Engineering;

compilation and submission of student research project as examination preparation until examination date

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Foundation Types lecture/exercise: 30 h
- · Basics in Earthworks and Embankment Dams lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises Foundation Types: 10 h
- preparation and follow-up lecture/exercises Basics in Earthworks and Embankment Dams: 10 h
- preparation of student research project: 60 h
- examination preparation: 40 h

total: 180 h

Literature

- [1] Witt. K.J. (2008), Grundbau-Taschenbuch, Teil 1,
 [2] Ernst & S. Smoltczyk, U. (2001), Grundbau-Taschenbuch, Teil 2-3,
 [3] Ernst & S. Schmidt, H.G. & Seitz, J. (1998), Grundbau, Bilfinger & Berger
 [4] Striegler (1998), Dammbau in Theorie und Praxis, Verlag für Bauwesen Berlin
 [5] Kutzner (1996), Erd- und Steinschüttdämme für Stauanlagen, Enke Verlag Stuttgart

6.10 Module: Electron Microscopy II [M-PHYS-103761] Μ **Responsible:** Prof. Dr. Dagmar Gerthsen Organisation: KIT Department of Physics Part of: **Specific Supplements** Credits Language German/English Level Version Recurrence Each winter term 5 4 1 Mandatory T-PHYS-107600 5 CR Gerthsen Electron Microscopy II

6.11 Module: Engineering Geology: Laboratory and Field Methods [M-BGU-102434]

Responsible:	Prof. Dr. Philipp Blum
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Key Competences in Geosciences (Compulsory Elective Modules)

	Credits 7	Recurrence Each winter term	Language German	Level 4	Version 1	
Mandatory						
T-BGU-104814 Engineering Geologie: Laboratory and Field Methods				7 (CR Blum	

Competence Certificate

The assessment consists of an oral exam (20 min) according to §4 (2) of the examination regulations and two non-assessed reports (Laboratory and field methods).

Prerequisites

keine

M 6.12 Module: Engineering Geology: Mass Movements and Modelling [M-BGU-102442]

Responsible: Dr. Kathrin Menberg **Organisation:** KIT Department of C

isation:KIT Department of Civil Engineering, Geo- and Environmental SciencesPart of:Key Competences in Geosciences (Compulsory Elective Modules)

Specialization in Geosciences

Credits
5Recurrence
Each winter termLanguage
GermanLevel
5Version
2

Mandatory				
T-BGU-110724	Engineering Geology: Mass Movements	2 CR	Menberg	
T-BGU-110725	Engineering Geology: Modelling	3 CR	Menberg	

Prerequisites

none

M 6.13 Module: Environmental Geology: Radio- & Chemotoxic Elements [M-BGU-102455]

Responsible:	Dr. Frank Heberling Dr. Volker Metz
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Specialization in Geosciences

Credits	Recurrence	Language	Level	Version
5	Each winter term	German/English	5	2

Mandatory				
T-BGU-107560	Environmental Geology: Radio- & Chemotoxic Elements	3 CR	Heberling	
T-BGU-107623	Radiogeochemical Field Excercise and Seminar	2 CR	Heberling	

Competence Certificate

The assessment consists of a written exam (90 min) about the lecture and an examination of another type (Seminar as preparation for field excercise (15 min presentation) and report (15-20 pages, submission till 2 months after the excercise)) according to §4 (2) of the examination regulations.

Prerequisites

None

Annotation

Depending on the auditorium, this module is held in German or English

M 6.14 Module: Environmental Geotechnics (bauiM5S09-UMGEOTEC) [M-BGU-100079]

Responsible: Organisation: Part of:

N.N.

KIT Department of Civil Engineering, Geo- and Environmental Sciences Specific Supplements

Credits	Recurrence	Duration	Language	Level	Version	
6	Each winter term	1 term	German	4	1	

Mandatory				
T-BGU-100084	Landfills	3 CR	Bieberstein	
T-BGU-100089	Brownfield Sites - Investigation, Evaluation, Rehabilitation	3 CR	Bieberstein	

Competence Certificate

- 'Teilleistung' T-BGU-100084 with oral examination according to § 4 Par. 2 No. 2

- 'Teilleistung' T-BGU-100089 with oral examination according to § 4 Par. 2 No. 2

details about the learning control see at the 'Teilleistung'

Competence Goal

The students can describe the legal guidelines regarding the disposal of wastes and the permitted threshold value for brownfields. They can outline the geotechnical concerns in the construction of landfill sites depending on the particular landfill classification, landfill elements, their relevant requirements and necessary certifications. They are able to interlink interdisciplinarily the chemical, mineralogical, biological, hydraulic and geotechnical aspects dealing with brownfileds. They can choose reasonably between the relevant remediation technologies and assess their limits of applications and risks.

Module grade calculation

grade of the module is CP weighted average of grades of the partial exams

Prerequisites

none

Content

The module covers geotechnical techniques in dealing with waste and brownfields. The environmental engineering, scientific and legal basics are discussd. Working steps of project planning, building materials, ways of construction and proofs are presented. Techniques for burning and immobilisation are explained as well as different microbiological, electrokinetic, hydraulic and pneumatic soil remediation methods.

Recommendation

none

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- · Landfills lecture/exercise: 30 h
- Brownfield Sites Investigation, Evaluation, Rehabilitation lecture: 30 h
- · Excursion: 10 h

independent study:

- · preparation and follow-up lecture/exercises Landfills: 25 h
- examination preparation Landfills (partial exam): 30 h
- preparation and follow-up lectures Brownfield Sites Investigation, Evaluation, Rehabilitation: 25 h
- examination preparation Brownfield Sites Investigation, Evaluation, Rehabilitation (partial exam): 30 h

total: 180 h

Literature

DGGT, GDA-Empfehlungen – Geotechnik der Deponien und Altlasten, Ernst und Sohn, Berlin Drescher (1997), Deponiebau, Ernst und Sohn, Berlin Reiersloh, D und Reinhard, M. (2010): Altlastenratgeber für die Praxis, Vulkan-V. Essen

Applied Geosciences Master 2016 (Master of Science (M.Sc.)) Module Handbook as of 19.02.2020

6.15 Module: Environmental Mineralogy [M-BGU-104466] Μ **Responsible:** Prof. Dr. Stefan Norra Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: Specialization in Geosciences Credits Version Recurrence Language Level Each winter term German 5 5 1 Mandatory T-BGU-109325 **Environmental Mineralogy** 5 CR Norra

Competence Certificate

The assessment consists of an examination of another type (graded report about the lecture and the practice) according to §4 (2) of the examination regulations.

Prerequisites

None

6.16 Module: Field Excercises / Excursion [M-BGU-102456] Μ **Responsible:** Prof. Dr. Armin Zeh **Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: Specialization in Geosciences Credits Recurrence Language Level Version Each summer term 5 English 5 1 Mandatory T-BGU-104878 Field Excercise / Excursion 5 CR Zeh

Competence Certificate

The assessment consists of an examination of another type according to §4 (2) of the examination regulations. It consists of the participation in field trips (required excursion days: 10) (often international), keeping a field book and different assignments (for example a preparing literature seminar with presentations, daily protocols, reports etc.)

Prerequisites

None

Competence Certificate

The assessment consists of an examination of another type (ca. 10 exercise sheets in ILIAS for the lecture, a short presentation on one analysis method and a 30-45 min presentation in groups of two or three on a given laboratory project for the practise) according to §4 (2) of the examination regulations.

Prerequisites none

Recommendation none

6.18 Module: Geological Mapping and Processing of Geospatial Data [M-BGU-102437]

Responsible:	apl. Prof. Dr. Kirsten Drüppel			
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences			
Part of:	Key Competences in Geosciences (Compulsory Modules)			

	Credits 8	Recurrence Each summer term	Language German/English	Level 4	Version 1	
Mandatory						
T-BGU-104819	Geological Mapping and Processing of Geospatial Data 8 CR Drüppel					Drüppel

Competence Certificate

The assessment consists of an examination of another type according to §4 (2) of the examination regulations. It consists of field work, creating a geological mal and a mapping report.

Prerequisites

keine

Competence Certificate

The assessment consists of an examination of another type (presentation) according to §4 (2) of the examination regulations.

Annotation

Depending on the auditorium, this module is held in German or English

Literature

IPCC Report zur CO2-Speicherung

EU Richtlinie zur CO2 Speicherung

Jaeger & Cook: Fundamentals of Rock Mechanics. Wiley-Blackwell ISBN 978-0-632-05759-7, 488 S. Zoback: Reservoir Geomechanics, Cambridge University Press, ISBN 978-0-521-14619-7, 461 S.

6.20 Module: Geology [M-BGU-102431] Μ **Responsible:** Prof. Dr. Christoph Hilgers **Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: Key Competences in Geosciences (Compulsory Elective Modules) Credits Version Recurrence Language Level 5 Each winter term English 5 1 Mandatory T-BGU-104812 Geology 5 CR Hilgers

Competence Certificate

The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations.

Competence Goal

- Students will be trained to apply structural geology at an advanced level and using real world examples.
- Students will be trained to link rocks to depositional systems and vice versa.

Prerequisites

none

Content

Applied Structural Geology:

- Stress and Strain
- Fractures and Mohr Circle
- Joints and Veins
- Normal faults
- Thrust faults
- Strike slip faults
- Inversion
- Strain measurements
- Diapirs & Intrusions
- Folds
- Folds and Cleavage
- Microstructures
- Maps / Structural Analysis

Depositional Systems:

- · Overview, description of sediments
- Eolian systems
- Fluvial systems
- · Estuaries and incised valleys
- Deltas & Clastic Shorelines
- Evaporites
- Clastic shelves
- Reefs and platforms
- Submarine fans and Turbidites
- Sea level change
- Sequence stratigraphy

Literature

Structural Geology

Price N.J., Cosgrove, J.W. 1990 Analysis of geological structures. Cambridge University Press, 502 pp. (reprint 2005) Ramsay J.G., Huber M.I. 1987 The techniques of modern structural geology Vol.1: Folds and fractures. Academic Press, 391pp. Ramsay J.G., Huber M. The techniques of modern structural geology Vol.2: Strain analyses. Academic Press, 307pp. Ramsay J.G., Lisle, R.J. 2000. The techniques of modern structural geology Vol.3: Applications of continuum mechanics in structural geology. Academic Press

Depositional Systems

James, N.P., Dalrymple, R.W. 2010. Facies models 4. Geological Association of Canada; ISBN-13: 978-1-897095-50-8; ISSN: 1208-2260, 586 pp.

Posamentier, H.W., Walker, R.G. 2006. Facies models revisited. SEPM Special Publication 84, 527pp.

Slatt, R.M. 2006. Stratigraphic reservoir characterization for petroleum geologists, geophysicists and engineers. Elsevier 478 pp

11 CR N.N.

Competence	Certificate

- 'Teilleistung' T-BGU-107465 with written examination according to § 4 Par. 2 No. 1

Geotechnical Engineering

details about the learning control see at the 'Teilleistung'

Competence Goal

T-BGU-107465

The students have a scientifically sound understanding of the building material 'soil' with respect to its appearance and mechanical behaviour. They are able to describe the latter on base of soil mechanical and soil hydraulic models, to classify and to analyse respective field and laboratory tests. Because of their knowledge in usual geotechnical construction methods they can self-dependently select, design and describe the construction process for standard applications, such as building foundations, construction pit linings and tunnels adapted to the respective ground and groundwater conditions. Further, they are able to proof self-dependently ultimate limit states and serviceability limit states of those geotechnical constructions and natural slopes and to evaluate the results critically.

Module grade calculation

grade of the module is grade of the exam

Prerequisites

none

Content

The module imparts theoretical principles of soil behavior and demonstrates their practical application in designing of the most common geotechnical constructions. This covers:

- · standards, codes and safety concepts in foundation engineering
- subsoil investigation, soil classification, soil properties and soil parameters
- permeability, seepage and groundwater management
- · stress distributions in the subsoil, compression behavior and consolidation
- shear resistance of soils, stability of slopes and foundations
- · design and settlement calculation of shallow foundations
- · earth pressure and earth resistance, design of retaining structures and retaining walls for excavations
- pile foundations, deep foundations and caisson foundations in open water
- methods for soil improvement
- introduction to tunneling

Recommendation

The not graded accomplishment Geology in Civil Engineering [T-BGU-103395] shall be passed.

The attendance of the lecture accompanied tutorials (6200417, 6200517) is recommended. Likewise, the preparation of voluntary term papers is absolutely recommended as follow-up and preparation for the examination.

Annotation

Tutorials are offered accompanying to the lectures, the participation is strongly recommended. Preparation and follow-up of the lectures can be done by ones-own in terms of working on a student research project.

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Basics in Soil Mechanics lecture, exercise, tutorial: 90 h
- · Basics in Foundation Engineering lecture, exercise, tutorial: 90 h

independent study:

- preparation and follow-up lectures, exercises Basics in Soil Mechanics: 30 h
- preparation and follow-up lectures, exercises Basics in Foundation Engineering: 30 h
- examination preparation: 90 h

total: 330 h

Literature

Triantafyllidis, Th. (2014): Arbeitsblätter und Übungsblätter Bodenmechanik Triantafyllidis, Th. (2011): Arbeitsblätter und Übungsblätter Grundbau Gudehus, G (1981): Bodenmechanik, F. Enke Grundwissen "Der Ingenieurbau" (1995) Bd. 2: Hydrotechnik – Geotechnik, Ernst u. Sohn
6.22 Module: Geothermal Reservoir Engineering [M-BGU-105136]

Responsible:	Dr. Emmanuel Gaucher PD Dr. Jens Carsten Grimmer Prof. Dr. Thomas Kohl
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Specialization in Geosciences

Mandatory					
T-BGU-110427	Geothermal Reservoir Engineering - Topics	3 CR	Gaucher, Grimmer, Kohl		
T-BGU-110428	Geothermal Reservoir Engineering - Seminar	2 CR	Gaucher, Grimmer, Kohl		

Competence Certificate

The assessment consists of

1. a written exam (90 minutes) (following §4(2), of the examination regulation).

2. oral presentation

Competence Goal

- The students will be able to compare and to analyze geothermal systems.

- The students will be able to assess and discuss geothermal systems.

- The student will be able to acquire and to present in front of their peers specific knowledge of geothermal systems from the literature and to discuss.

Module grade calculation

The overall grade of the module is the average of the grades for each course weighted by the credits.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

- 1. The module M-BGU-102432 Geothermics: Energy and Transport Processes must have been passed.
- 2. The module M-BGU-102447 Applied Geothermics must have been passed.

Content

The content of this course contains basics, technologies, and exploration methods of geothermal systems.

- Introduction into geothermal reservoir engineering
- Reservoir geology of crystalline and sedimentary rocks
- Geothermal exploration
- Geothermometry of thermal water
- Scalings
- Induced seismicity
- Seismic monitoring
- Numerical reservoir modelling
- Ground source heat pumps

Annotation

1. Often you will hear the Name "Geothermie III" for this module.

- 2. Starting from the winter term 2019/2020 this is the new name for the module M-BGU-102448, Topics of Geothermal Research
- 3. Presentation required

Workload

regular attendance: 50 hours self study 100 hours

6.23 Module: Geothermics: Energy and Transport Processes [M-BGU-102432]

Responsible:	Prof. Dr. Thomas Kohl
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Key Competences in Geosciences (Compulsory Elective Modules)

Mandatory					
T-BGU-104813	Geothermics: Energy and Transport Processes	5 CR	Kohl, Schilling		
T-BGU-107635	Field Trip General Geothermics	0 CR	Kohl		

Competence Certificate

The assessment consists of a written exam (45 min) according to §4 (2) of the examination regulations and a non-assessed coursework (participation in excursion and report) according to §4 (3) of the examination regulations.

Competence Goal

- The students obtain knowledge in the field of geothermics and are able to integrate relevant physical processes into the subject field

- The students are able to apply methods for geothermal subsurface investigations and to make calculations with the obtained data

Content

- Heat budget of the Earth (influence of the sun, humans, stored heat, heat production)
- Heat transport in rocks (phonons, photons, elektrons, advective heat transport)
- Physical understanding of underlying mechanisms and processes
- Introduction into Geothermics, relations and boundaries to other related disciplines

- Energy conservation, thermal and petrophysical properties of rocks, temperature field of the Earth, influence of topography and climate on temperature distribution, Fourier law, stationary/instationary heat conduction, heat ransport in continental and oceanic crust, advection by flow (Darcy law), Kelvin problem, Gauss error function

- Introduction into methods and applications in geothermics: Bullard plot interpretation, measurement, Bottom Hole Temperature data

- Introduction into geophysical geodynamics

Annotation

The date for the excursion and the closing date for the excursion report will be promptly announced.

M 6.24 Module: Ground Water and Earth Dams (bauiM5S04-GWDAMM) [M-BGU-100073]

 Responsible:
 N.N.

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 Specific Supplements

 Credits
 Recurrence
 Duration
 Language
 Level
 Version

Mandatory				
T-BGU-100091	Ground Water and Earth Dams		6 CR	Bieberstein

1 term

German

Competence Certificate

- 'Teilleistung' T-BGU-100091 with oral examination according to § 4 Par. 2 No. 2

Each summer term

details about the learning control see at the 'Teilleistung'

6

Competence Goal

The students can describe the deepened knowledge about different geotechnical groundwater problems. They can dimension dewatering under very different boundary conditions and demonstrate geohydraulic relationships by example calculations. They are able to develop own solution approaches for dam construction problems, to evaluate construction techniques and to conduct the requested geotechnical proofs.

Module grade calculation

grade of the module is grade of the exam

Prerequisites

none

Content

The module discusses the investigation of the groundwater conditions in laboratory and field. Geohydraulic fundamentals are extended with respect to anisotropy, saturation fronts, air permeability and groundwater drawdown under specific boundary conditions. The construction of flow nets is applied to seepage problems and the underseepage of dams. The hydrologic hydraulic and geotechnical design of dams is deepened. Hereby, the design of artificial sealings and filters is linked to the geomechanical proofs such as sliding, spread and uplift stability, deformation and earthquake design. Buried auxiliary structures, dams designed for overtopping as well as metrological monitoring of dams are mentioned, too.

Recommendation

module 'Earthworks and Foundation Engineering'

Annotation

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Geotechnical Ground Water Problems lecture/exercise: 30 h
- · Embankment Dams (Advanced) lecture/exercise: 30 h
- field trips: 10 h

independent study:

- preparation and follow-up lecture/exercises Geotechnical Ground Water Problems: 25 h
- preparation and follow-up lecture/exercises Embankment Dams (Advanced): 25 h
- examination preparation: 60 h

total: 180 h

Literature

[1] Cedergren, H.R. (1989), Seepage, Drainage, and Flow Nets, 3. Aufl. Wiley

[2] Herdt, W. & Arndts, E. (1985), Theorie und Praxis der Grundwasserabsenkung, 2. Aufl. Ernst & S.

6.25 Module: Hydrogeology: Field and Laboratory Methods [M-BGU-102441]

Responsible:	Dr. rer. nat. Nadine Göppert
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Specialization in Geosciences

	Credits 5	Recurrence Each summer term	Language German	Level 5	Version 2	
Mandatory						
T-BGU-104834	Hydrogeology: Field and Laboratory Methods					R Göppert

Competence Certificate

The assessment consists of an examination of another type (graded presentation in seminar) according to §4 (2) of the examination regulations.

Prerequisites

It is mandatory to choose the module "Hydrogeology: Methods and Applications" as a requirement for this module, since it addresses the theoretical and practical background.

6.26 Module: Hydrogeology: Groundwater Modelling [M-BGU-102439] Μ **Responsible:** Dr. Tanja Liesch **Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: Specialization in Geosciences Credits Recurrence Language Level Version Each winter term 5 German 4 1 Mandatory T-BGU-104757 Hydrogeology: Groundwater Modelling 5 CR Liesch

Competence Certificate

The assessment consists of an examination of another type (working on a problem, submission ca. mid-February and a ca. 15min poster-presentation) according to §4 (2) of the examination regulations.

Prerequisites

It is mandatory to choose the module "Hydrogeology: Methods and Applications" as a requirement for this module, since it addresses the theoretical and practical background.

The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations.

Module grade calculation

The grade of the module is the grade of the exam

Prerequisites

none

6.28 Module: Hydrogeology: Karst and Isotopes (with Field Trip) [M-BGU-105150]

Responsible:	Prof. Dr. Nico Goldscheider
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Key Competences in Geosciences (Compulsory Elective Modules)

Credits	 Level	Version
7 Each winter	4	1

Mandatory				
T-BGU-104758	Hydrogeology: Karst and Isotopes	5 CR	Goldscheider	
T-BGU-110413	Field Trip Karst Hydrogeology	2 CR	Goldscheider	

Competence Certificate

The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations and a non-assessed coursework (non-assessed excursion report).

Prerequisites

none

The assessment consists of a written module exam (120 min) according to §4 (2) of the examination regulations.

Prerequisites

none

Annotation

It is mandatory to choose the module "Hydrogeology: Methods and Applications" as a requirement for the modules "M-BGU-102439 – Hydrogeology: Groundwater Modelling" and "M-BGU-102441 - Hydrogeology: Field and Laboratory Methods, since it addresses their theoretical and practical background".

The assessment consists of an examination of another type (graded module report incl. field trip report) according to §4 (2) of the examination regulations.

Competence Goal Industrial Minerals

The students know the fundamental characteristics of industrial mineral deposits. They know the different possibilities of industrial application and quality requirements of the respective raw material. They are able to describe samples from industrial mineral deposits, recognize the relevant structure, fabric, texture and mineral assemblage. They can use their observations to make interpretations regarding mineral deposit formation and ore deposit quality. The students know the principle ore deposit models and can use this knowledge in order to interpret their sample set. They are able to decide, which mineral exploration method would be required for exploration of the various deposits and they are able to make basic assumptions about the economy of the deposit. They know how to translate geological observations into key parameters for mineral exploration.

The students know how to analyze short scientific papers and are able to understand and present the main message. They can relate the message in the paper to own observations in the samples and present a joint interpretation.

The students know how to apply their theoretical knowledge in the field. They make interpretations at various scales (thin section, sample, outcrop, deposit, district). They know, how to make meaningful sketches and how to present their observations and interpretation in written and oral formats. They are able to analyze, interpret and discuss their data in conjunction with published ore deposit models and can decide on the style of mineralization and the way of mineral exploration.

Environmental aspects of mining

The students know different environmental risks related to the extraction of metal ores, industrial minerals and energy resources and assign them to the respective stage (exploration, extraction, processing etc.). They are able to derive the potential environmental hazards of individual types of resources and propose suitable reclamation measures based on a sound knowledge of their geochemical and mineralogical characteristics. They can assess the positive and negative effects of extraction, processing and use of different resources on humans and the environment in a differentiated manner and are thus able to critically evaluate their own behaviour in the context of sustainable use of resources.

Prerequisites

none

Content Industrial Minerals

The combined lectures and practicals start with an introduction into the industrial minerals raw material market and mineral deposit evaluation. The following lessons combine a lecture about the fundamental processes of deposit formation and the relationship to mineral exploration and quality of the industrial mineral resource with practical study of representative samples. In addition, scientific papers will be read and interpreted in some lessons.

During two days of field work the theoretical and practical skills will be applied in the field in selected industrial mineral deposits. Standard methods of geological field work will be applied and directed towards interpretation of the respective deposit.

Environmental aspects of mining

It will be looked at different environmental impacts of ore extraction and processing like acid mine drainage, cyanide leaching, amalgamation or oil spillage with specific focus on the hydrosphere, pedosphere, atmosphere, human beings and society. Furthermore, different strategies on how to minimize environmental impacts will be discussed and different examples on renaturation and reclamation will be presented. Also legal aspects of mineral resources exploration and extraction will be addressed.

Annotation

Students should be aware of harsh conditions during field work and should let the responsible person know, if they would have problems to work underground in old mines.

Depending on the auditorium, the course "Environmental Aspects of Mining" is held in German or English

Workload

60 hours lectures and practicals (including 2 days of field trip) and 90 hours self study/homework

Literature

Kesler, S.E. & Simon, A.C. (2015): Mineral Resources, Economics and the Environment. Cambridge University Press, Cambridge, 434 pp.

Harben, P. (most recent edition): The Industrial Minerals HandyBook, a guide to markets, specifications and prices. Industrial Minerals Division, Metal Bulletin PLC, London.

Bewertungskriterien für Industrieminerale, Steine und Erden. Geologisches Jahrbuch Reihe H. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart. Different publications of various authors; in German with English abstract.

Publications of the Geological Surveys: BGR, DERA, BGS, USGS, etc.

Brown, M., Barley, B., Wood, H. 2002. Mine Water Treatment: technology, application and policy. IWA publishing

Lottermoser, B.G. 2003. Mine wastes. Springer Verlag

M 6.31 M	Module:	Internsl	nip [M-BGU-	-103996]			
Responsible: Organisation: Part of:	KIT Dep		ivil Engineering,	Geo- and Environm Project Study or Inter		ices	
		Credits 5	Recurrence Irregular	Language German/English	Level 4	Version 2	
Mandatory							
T-BGU-108210	Interns	ship				5	CR

The assessment consists of

- submission of an internship certificate from the employer with information about the internship, duration and the field of activity

- an examination of another type (graded internship report ca. 10-20 pages, equivalent to the report of the project study, and ca. 20 min presentation)

according to §4 (2) of the examination regulations.

Prerequisites None

Applied Geosciences Master 2016 (Master of Science (M.Sc.)) Module Handbook as of 19.02.2020

The assessment consists of an oral exam (30 min) taking place at a specific date.

The re-examination is offered at a specific date.

Workload

180 h

6.33 Module: Mineral Exploration [M-BGU-105357]

Responsible:	Dr. Clifford Patten
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Specialization in Geosciences (Usage from 4/1/2020)

	Credits 5	Recurrence Each summer term	Language English	Level 5	Version 1
landatory					
T-BGU-110833	Mineral Explorati	on			5 CI

Competence Certificate

The students will need to provide a report (~10 pages) on the specific project they have been assigned to. They need to show that they know the right methods of exploration. Deadline for the report is individually scheduled. The first version of the report has to be improved if necessary.

Competence Goal

The students know the different geochemical methods applied to mineral resources exploration. They can choose the bestsuited methods at the different stages of exploration for optimizing ore deposits discovery. They also know which exploration methods to use for specific ore deposit types.

The students know how to interpret geochemical data and how to correlate them with field and sample observations. They know how to write an exploration report.

The students will have the qualifications required for working in the ore mineral industry.

Module grade calculation

Grade of the report is the module grade.

Prerequisites

Students need detailed knowledge on ore forming processes of metallic and non-metallic mineral resources. They also need detailed background in geochemistry and geochemical analytics. Basic knowledge of geophysical exploration methods will be expected.

Content

-Theory for mineral exploration at regional, district, area, target and deposit scale (scientific approach, economics...).

-Geochemical distribution of metals and element of interests in the primary environment (i.e. during magmatism, metamorphism and alteration processes...).

-Geochemical dispersion of metals and element of interests in the secondary environment (i.e. soil, gossans, till, laterites...).

-Greenfield methods for exploration such as stream sediments, soil, rock and water survey.

-Brownfield methods for exploration at deposit scale with specific focus on drill core logging.

-Field sampling and laboratory data acquisition.

-Data interpretation from study cases and from data personally acquired by the stu-dents.

Recommendation

The students should have done the course of "Ore Geology of Metals" and "Industrial Minerals and Environment" or have background knowledge in ore geology.

Annotation

The course is held in 3 blocks (1. Block short course, 2. Block short course and project preparation, 3. Block data interpretation). See university calendar / course catalogue

Workload

40h Lectures, 2-3 field work or sample selection (ca. 25h), ca. 25h laboratory work, 60h self-study (report) = 150 h

Learning type

Lecture, literature research, fieldwork and labwork, report

Literature

Papers presented in lectures

6.34 Module: Mineral Materials [M-BGU-102453] Μ **Responsible:** Dr. Matthias Schwotzer Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: Specialization in Geosciences Credits Version Recurrence Language Level 5 Each term German 4 1 Mandatory T-BGU-104856 **Mineral Materials** 5 CR Schwotzer

Competence Certificate

The assessment consists of an oral exam (30 min) according to §4 (2) of the examination regulations.

Prerequisites

None

The assessment consists of the Master's Thesis and a presentation. The maximum processing time for the Master's Thesis is six months. The presentation should take place within 8 weeks after the submission of the Master's Thesis.

Modeled Conditions

The following conditions have to be fulfilled:

- 1. You need to earn at least 70 credits in the following fields:
 - Specific Supplements
 - Key Competences in Geosciences
 - Specialization in Geosciences

6.36 Module: Numerical Methods in Geosciences [M-BGU-102436]

Responsible:	Prof. Dr. Thomas Kohl
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Key Competences in Geosciences (Compulsory Modules)

ecurrence Langua	ge Level	Version
h winter term Englis	h 4	1

Mandatory			
T-BGU-104816	Numerical Methods in Geosciences	6 CR	Kohl

Competence Certificate

The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations. As a prerequisite for admission to the exam, a homework must be handed in.

Competence Goal

- The students are able to apply a numerical simulation model
- The students obtain knowledges in basic applications of statistical and probability calculations for analysis of geoscientific data and modelling of processes
- The students are able to handle Matlab as programming language

Prerequisites

none

Content

- Matlab as programming language: introduction, basics, graphics
- Statistical methods and probability calculations of geoscientific data
- Physical mechanisms and processes in geosciences
- Numerical strategies for solution of complex coupled processes (finite differences, finite elements, coupling)
- Introduction into reservoir simulation
- Calculation of a doublet with analytical calibration models

Recommendation

Own laptop/PC

Annotation

Homework required

The assessment consists of an oral exam (30 min) according to §4 (2) of the examination regulations. A report of the field trip and a protocol of the analysis have to be handed in before the exam.

Competence Goal

The students know the fundamental approach of describing samples from ore deposits (hand specimen, drill core) and thin and polished sections. They can analyze the samples and relate them to the specific ore deposit type. They know the specific textures and are able to discuss them in order to develop a model for the mineralization or hydrothermal alteration processes.

The students know the principle ore deposit models and can use this knowledge in order to interpret their sample set that comes from different parts or zones of an ore deposit. They understand the different scales that are involved in ore deposit formation and are able to use their observations on the samples to interpret and discuss the scale-dependent processes involved in mineralization.

The students know the principle methods of mineral exploration and are able to translate geological observations into key parameters for mineral exploration.

The students know how to analyze short scientific papers and are able to understand and present the main message. They can relate the message in the paper to own observations in the samples and present a joint interpretation.

The students know how to apply their theoretical knowledge in the field. They make interpretations at various scales (thin section, sample, outcrop, deposit, district). They know, how to make meaningful sketches and how to present their observations and interpretation in written and oral formats. They are able to analyze, interpret and discuss their data in conjunction with published ore deposit models and can decide on the style of mineralization and the way of mineral exploration.

Prerequisites

none

Content

- · Detailed processes of ore deposit formation, including modern research advances.
- Ore petrology on sample, drill core, thin section and polished section.
- Reading and interpretation of short papers on ore deposit geology.
- Orthomagmatic Ni-PGE-Cu-Au deposits.
- · Podiform Chromite deposits.
- · Magmatic REE-Nb-Ta deposits.
- Copper Porphyry deposits.
- · Epithermal Au-Ag deposits.
- Skarn deposits.
- · VMS-SEDEX deposits.
- · Orogenic Gold deposits.
- Iron Oxide Copper Gold deposits.
- MVT-SSC deposits.
- · Fundamentals of recognizing and describing mineralization in the field.

Recommendation

Students should have a basic level of understanding of ore-forming processes from a previous Economic Geology course.

Workload

Approx. 60 hours lectures and practicals (including a 2 day field trip) and 90 hours homework

Learning type

Lecture / Practicals

(VÜ)

Literature

Books:

Robb, L., 2005: Introduction to Ore-Forming Processes. Blackwell Publishing, Oxford, 373 pp. Ridley, J., 2013: Ore Deposit Geology. Cambridge University Press, Cambridge, 398 pp. Guilbert, J.M. & Park, C.F., 2007: The Geology of Ore Deposits. Waveland Press, 985 pp. Pirajno, F., 2009: Hydrothermal Processes and Mineral Systems. Springer, Heidelberg, 1250 pp.

5 CR Drüppel

6.38 Module: Petrology [M-BGU-102452]

Responsible:apl. Prof. Dr. Kirsten DrüppelOrganisation:KIT Department of Civil Engineering, Geo- and Environmental SciencesPart of:Specialization in Geosciences

	Credits	Recurrence	Language	Level	Version
	5	Each summer term	German	4	1
Mandatory					

Competence Certificate

T-BGU-104854

Petrology

The assessment consists of an examination of another type (graded homework) according to §4 (2) of the examination regulations.

Prerequisites

none

Mandatory				
T-CHEMBIO-103385	Physical Chemistry	8 CR		
T-CHEMBIO-109395	Laboratory Work in Physical Chemistry	5 CR		

Prerequisites

None

6.40 Module: Project Study [M-BGU-102438] Μ **Responsible:** Prof. Dr. Philipp Blum Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Key Competences in Geosciences (Project Study or Internship) Part of: Credits Recurrence Version Language Level German/English 5 Irregular 4 2

Mandatory				
T-BGU-104826	Project Study	5 CR	Blum	
T-BGU-107639	Introduction to Project Management	0 CR	Hilgers	

Competence Certificate

The assessment consists of an examination of another type (Project Study: graded report an presentation) according to §4 (2) of the examination regulations, as well as a non-assessed coursework (participation in course "Introduction to Project Management" and presentation) according to §4 (3) of the examination regulations.

Prerequisites

none

The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations and including the field book.

Competence Goal

After this course students are enabled to interpret fluid migration in porous and fractured rock in 3D sedimentary bodies over time, governing aspects from basin- and structural evolution to facies- and porosity-permeability development. They are enabled to map and characterize sedimentary rocks properties in the field including structural- and petrophysical aspects. They work in teams and critically evaluate own data with published literature.

Prerequisites

none

Content

Basins and reservoirs; methods: petrography, isotopy, microthermometry and cathodoluminescence; burial history and maturation; depositional settings and well correlations; structures; migration and traps; pore pressures, compaction and water saturation; diagenesis; reservoir characterization; reservoir quality prediction; plays and risks. Practical application of reservoir geology in a given field study area with special focus on structure, diagenesis and 3D geometries in sedimentary rocks

Recommendation

The student shall have a basic knowledge of sedimentology and structural geology, such as presented in the module Geologie (Geology), MSc 1st semester

Literature

Bjorlykke, K. 2015. Petroleum Geoscience. From sedimentary environments to rock physics. Gluyas, J., Swarbrick, R.2015 Petroleum geoscience.

6.42 Module: Rock Mechanics and Tunneling (bauiM5P3-FMTUB) [M-BGU-100069]

Responsible:N.N.Organisation:KIT Department of Civil Engineering, Geo- and Environmental SciencesPart of:Specific Supplements

Mandatory			
T-BGU-100069	Rock Mechanics and Tunneling	5 CR	Grandas Tavera
T-BGU-100179	Student Research Project 'Rock Mechanics and Tunneling'	1 CR	Grandas Tavera

Competence Certificate

- 'Teilleistung' T-BGU-100179 with not graded accomplishment according to § 4 Par. 3

- 'Teilleistung' T-BGU-100069 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Competence Goal

The students understand the essential strength and deformation properties of rock and master the basic analytical methods to solve boundary value problems of surface and underground rock excavation. They can select basic construction methods and constructions in underground tunnel construction and apply self-reliantly the methods of rock mechanics and static calculation and safety assessments. With regard to the assessment of variants, costs, construction operation and safety aspects they gained geotechnical competence in solving problems for all kind of constructions in and with solid rocks.

Module grade calculation

grade of the module is grade of the exam

Prerequisites

none

Content see German version

Recommendation

basic knowledge of Engineering Geology;

compilation and submission of student research project as examination preparation until examination date

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Basics in Rock Mechanics lecture/exercise: 30 h
- · Basics in Tunnel Construction lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises Basics in Rock Mechanics: 20 h
- · preparation and follow-up lecture/exercises Basics in Tunnel Construction: 20 h
- preparation of student research project: 20 h
- examination preparation: 60 h

total: 180 h

Literature

[1] Brady, B. H. G. and Brown, E. T., (2004): Rock Mechanics for Underground Mining, 3rd. Edition, Kluwer Academic Publishers.

[2] Kolymbas, D. (1998), Geotechnik - Tunnelbau und Tunnelmechanik, Springer.

[3] Goodmann, R.E., (1989): Introduction to Rock Mechanics, John Wiley & Sons.

[4] Hoek, E., 2007: Practical Rock Engineering, kostenloser Download unter: http://www.rocscience.com/hoek/ PracticalRockEngineering.asp.

- [5] Jäger, J.C., Cook, N.G.W. and Zimmerman, R.W., 2007: Fundamentals of Rock Mechanics, Blackwell Publishing.
- [6] Wittke, W., 1982: Felsmechanik, Springer-Verlag.
- [7] Maidl, B. 1997: Tunnelbau im Sprengvortrieb
- [8] Müller, L. 1978: Der Felsbau, Bd. 3 Tunnelbau

The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations.

Module grade calculation

grade of the module is grade of the exam

Prerequisites

none

Annotation

Depending on the auditorium, this module is held in German or English

Workload

contact hours: 60h (lecture and exercises) self study time: 90h incl. exam

6.44 Module: Structural and Phase Analysis [M-BGU-105236]

Responsible:	DrIng. Susanne Wagner
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Specific Supplements

Credits 4Recurrence Each winter termLanguage GermanLevel 4Version 1
--

Mandatory			
T-MACH-102170	Structural and Phase Analysis	4 CR	Wagner

Competence Certificate

The assessment consists of an oral exam (20-30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation).

The re-examination is offered upon agreement.

Competence Goal

The students know the fundamentals of crystallography, the generation and detection of x-rays as well as their interaction with the microstructure of crystalline materials. They have detailed knowledge about the different methods of x-ray diffraction measurements and are able to analyse x-ray spectra using modern methods of x-ray analysis both qualitatively and quantitatively.

Module grade calculation

The grade of the module is the grade of of the oral examination.

Content

The course gives an overview to generation and detection of x-rays as well as their interaction with matter. It provides an introduction to crystallography and describes modern measurement and analysis methods of x-ray diffraction.

It is arranged in the following units:

- · Generation and properties of X-Ray's
- · Crystallography
- · Fundamentals and application of different measuring methods
- Qualitative and quantitative phase analysis
- Texture analysis (pole figures)
- Residual stress measurements

Workload

regular attendance: 30 hours self-study: 90 hours

Literature

Moderne Röntgenbeugung - Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker, Spieß, Lothar / Schwarzer, Robert / Behnken, Herfried / Teichert, Gerd B.G. Teubner Verlag 2005 H. Krischner: Einführung in die Röntgenfeinstrukturanalyse. Vieweg 1990.

B.D. Cullity and S.R. Stock: Elements of X-ray diffraction. Prentice Hall New Jersey, 2001.

Oral examination, 20-30 min

Literature

W.D. Kingery, H.K. Bowen, D.R. Uhlmann, "Introduction to Ceramics", John Wiley & Sons, New York, (1976)

E. Dörre, H. Hübner, "Aluminia", Springer Verlag Berlin, (1984)

M. Barsoum, "Fundamentals of Ceramics", McGraw-Hill Series in Material Science and Enginewering (2003)

6.46 Module: Structural Geology [M-BGU-102451]

 Responsible:
 Prof. Dr. Agnes Kontny

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 Specialization in Geosciences

Credits	Recurrence	Language	Level	Versior
5	Each summer term	English	4	1

Mandatory			
T-BGU-107507	Microstructures	3 CR	Kontny
T-BGU-107508	Field Course Applied Structural Geology	2 CR	Kontny

Competence Goal

• Students will be trained in microstructural analysis in order to gain fundamental understanding of rock deformation. They learn to evaluate their own observation in relation to a tectonic context.

• Practical application of structural analysis in a given field study area.

Prerequisites

none

Content

• Microstructures: The students learn to describe and evaluate small scale structures in deformed rocks. They are enabled to describe and interprete rock fabric elements, foliation development, polyphase deformation, deformation mechanisms, porphyroblast growth-deformation relationship and shear zone fabrics.

• Field course Applied Structural Geology: The students learn to describe and interprete large scale structures in the field. They characterize the development of normal faults, folds, thrust systems, unconformities and explain polyphase deformation in space and time in different orogenic belts.

Literature

Passchier, C.W., Trouw, R.A.J. (2005): Microtectonics, 366 S., Springer. Vernon, R.H. (2004): A practical guide to rock microstructure, 594 S., Cambridge.

Further references to the field course will be delivered in advance

6.47 Module: Thermal Use of Groundwater [M-BGU-103408] Μ

Responsible:	Prof. Dr. Philipp Blum
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Specific Supplements

	Credits 4	Recurrence Each winter term	Language English	Level 4	Version 2	
Mandatory						
T-BGU-106803	Thermal Use of G	oundwater			4 (CR Blum

Competence Certificate

The assessment consists of an oral exam (approx. 15 min), according to § 4 Par. 2 No. 2.

Competence Goal

Students get familiar with the topic 'Thermal Use of Groundwater' and will be able to integrate their knowledge in particular in an urban water energy nexus. They get knowledge about the fundamentals of thermal transport in groundwater and their application to shallow geothermal systems such as ground source and groundwater heat pump systems. Hence, analytical and numerical simulations will be performed using Excel and Matlab scripted codes. They will be able to perform their own simulations and will be able to design shallow geothermal systems in context of the water energy nexus.

Module grade calculation

The grade of the module is the grade of the oral exam.

Content

The content of this module is mainly based on the textbook on 'Thermal Use of Shallow Groundwater' and is therefore structured as follows:

- Fundamentals (theory of heat transport in the subsurface)
- Analytical solutions for closed and open systems
- Numerical solutions for shallow geothermal systems
- Long-term operability and sustainability
- Field methods such as thermal tracer tests and thermal response tests (TRT)
- Case studies and applications

Analytical simulations are performed using Excel and Matlab scripted codes. In addition, calibration and validation exercises are performed using existing field and monitoring data. Finally, the students are actively planning an own geothermal system from the application up to the long-term performance of such a system. Hence, a final planning report should be written.

Recommendation

knowledge of programming with Matlab; otherwise, it is strongly recommended to attend the course 'Introduction to Matlab' (6224907)

Workload

Regular Attendance, active participation in lectures: 30 hours Preparation and follow-up of lectures (at home): 40 hours Self-study, preparation for the exam plus oral exam: 50 hours

total of 120 hours

Literature

Stauffer, F., Bayer, P., Blum, P., Molina-Giraldo, N., Kinzelbach W. (2013): Thermal Use of Shallow Groundwater. 287 pages, CRC Press.

Other documents such as recent publications are made available on ILIAS

6.48 Module: Urban Ecology (E13) [M-BGU-101568]

 Responsible:
 Prof. Dr. Stefan Norra

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 Specific Supplements

Credits
12Recurrence
Each termLanguage
GermanLevel
5Version
3

Mandatory						
T-BGU-103001	Urban Ecology	3 CR	Norra			
T-BGU-106684	Urban Ecology Lecture	3 CR	Norra			
T-BGU-106685	Urban Ecology Practical Course	6 CR	Norra			

Prerequisites None

Annotation None

6.49 Module: Water and Energy Cycles (bauiM2P8-WATENCYC) [M-BGU-103360]

Responsible:Prof. Dr.-Ing. Erwin ZeheOrganisation:KIT Department of Civil Engineering, Geo- and Environmental SciencesPart of:Specific Supplements

Credits	Recurrence	Language	Level	Version
6	Each winter term	English	4	1

Mandatory			
T-BGU-106596	Water and Energy Cycles	6 CR	Zehe

Competence Certificate

- 'Teilleistung' T-BGU-106596 with oral examination according to § 4 Par. 2 No. 2

details about the learning control see at the 'Teilleistung'

Competence Goal

Students are able to explain the most relevant processes of the terrestrial water and energy cycles including their feedbacks and limitations. They know the concepts to quantitatively describe and predict these processes in the context of science and water management and are able to independently apply related computer-based tools for analysis and prediction for standard situations. Students are able to evaluate the required data and to quantify and evaluate the uncertainties related to the simulations and predictions.

Module grade calculation

grade of the module is grade of the exam

Prerequisites

Content

This module deepens the fundamentals of the water and energy cycles with particular regard to:

- the soil as the central control element of the water and energy cycle and the interplay of soil water and ground heat balance
- evaporation, energy balance and processes in the atmospheric boundary layer
- runoff and evaporation regimes in different hydro-climates;
- water balance and floods at the catchment scale and statistics for water management
- · the interplay between runoff processes and soil water balance, and the soil as filter system
- · concepts of hydrological similarity and comparative hydrology
- · process-based and conceptual models to predict floods, the water balance and evaporation

Recommendation

course Hydrology (6200511) and module Water Resources Management and Engineering [bauiBFW9-WASSRM]; preliminary knowledge in Matlab programming, otherwise the attendance of the course 'Introduction to Matlab' (6224907) is strongly recommended

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

lecture/exercise: 60 h

independent study:

- · preparation and follow-up lecture/exercises, incl. optional homework: 60 h
- examination preparation: 60 h

total: 180 h

Literature

Kraus, H. (2000): Die Atmosphäre der Erde. ViewegS. P. Aryan (2001): Introduction to Micrometeorology, 2nd Ed., Academic PressHornberger et al. (1998): Elements of physical hydrology. John Hopkins University PressBeven, K. (2004): Rainfall runoff modelling – The primer: John Wiley and SonsPlate, E. J.,Zehe, E. (2008): Hydrologie und Stoffdynamik kleiner Einzugsgebiete. Prozesse und Modelle, Schweizerbart, Stuttgart, 2008.

10 CR Horn

6.50 Module: Water Chemistry and Water Technology [M-CIWVT-103753]

 Responsible:
 Prof. Dr. Harald Horn

 Organisation:
 KIT Department of Chemical and Process Engineering

 Part of:
 Specific Supplements

Water Chemistry and Water Technology

Credits	Recurrence	Language	Level	Version
10	Each winter term	German/English	4	1

Competence Goal

T-CIWVT-107585

- Students get familiar with processes in aquatic systems. These include the determination, occurrence and behavior of geogenic and anthropogenic compounds as well as microorganisms in the different parts of the hydrological cycle.
- apart from the questions on the chemical and biological water quality, the focus also lies on technical aspects of water use, water treatment and water technology.

Prerequisites

Mandatory

None

Content

Chemische und physikalische Eigenschaften des Wassers, Wasserkreislauf und Inhaltsstoffe, Kalk-Kohlensäure-Gleichgewicht, Sättigungsindex, Grundwasser, Oberflächenwasser, Umsetzungen, Trinkwasser, Grundlagen der Wasserbeurteilung, analytische Verfahren zur Wasseruntersuchung, wassertechnologische und wasserchemische Verfahren (Flockung, Fällung, Enteisenung, Entmanganung, Adsorption und Ionenaustausch, Gasaustausch, Enthärtung und/oder Entkarbonisierung, Oxidation und Entkeimung), Übungen

Recommendation

None

Literature

- · Crittenden et al. (2005): Water Treatment, Principles and design. Wiley & Sons
- Skoog, D., A., Holler, F. J., Crouch, S., R. (2013): Instrumentelle Analytik, Springer Spektrum
- Vorlesungsskripte

6.51 Module: Water Technology [M-CIWVT-103407]

 Responsible:
 Prof. Dr. Harald Horn

 Organisation:
 KIT Department of Chemical and Process Engineering

 Part of:
 Specific Supplements

Competence Certificate

Oral exam, 30 min

Competence Goal

Students learn fundamental knowledge in water chemistry and how to apply it to processes in aquatic systems in general and in reactors for water treatment. Water treatment will be taught for drinking water and partly waste water. The students are able to apply physical, chemical and biochemical treatment for the respective removal of particulate and dissolved components in water. They are able to use the fundamental design parameters for the different types of unit operations.

Prerequisites

None

Content

Water cycle, different types of raw water (ground and surface water). Water as solvent, carbonate balance, differentiation between microbiological and chemical population. Unit operations: sieving, sedimentation, filtration, floculation, flotation, ion exchange, aeration, oxidation, disinfection, adsorption). For all unit operations design parameters will be provided. Simple 1D models will be discussed for description of kinetics and retention time in reactors for water treatment.

Workload

Attendance time: 45 h Preparation/follow-up: 60 h Examination + exam preparation: 75 h

Literature

Crittenden, J.C. et al., 2005. Water treatment – Principles and design. Wiley & Sons, Hoboken.

Jekel, M., Gimbel, R., Ließfeld, R., 2004. DVGW-Handbuch: Wasseraufbereitung – Grundlagen und Verfahren. Oldenbourg, München.

Lecture notes will be provided in ILIAS

7 Courses

Part of: M-BGU-101053 - Advanced Analysis in GIS

Type	Credits	Version
Oral examination	4	2

Events					
SS 2020	6026208	Advanced Analyses in GIS	2 SWS	Lecture (V)	Rösch

Competence Certificate oral exam with 20 minutes

Prerequisites Keine

Recommendation None

Annotation Keine

7.2 Course: Advanced Clay Mineralogy [T-BGU-104840]

 Responsible:
 Dr. Katja Emmerich

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102444 - Applied Mineralogy: Clay Science

Type	Credits	Recurrence	Version
Examination of another type	2	Each summer term	1

Events					
SS 2020	6310430	Anwendungen von Tonen und Laboreinführung	2 SWS	Lecture / Practice (VÜ)	Emmerich

Prerequisites

none
7.3 Course: Applied Geothermics [T-BGU-108017]

 Responsible:
 Prof. Dr. Thomas Kohl

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102447 - Applied Geothermics

		Type Written examination	Credits 4	Recurren Each summe			
Events							
SS 2020	6310425	Geothermische Nu	tzung	2 SWS	Lecture / Practice	Kohl	

(VÜ)

Prerequisites

7.4 Course: Applied Geothermics - Excursion [T-BGU-108018]

 Responsible:
 Prof. Dr. Thomas Kohl

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102447 - Applied Geothermics

		Comple	Type ted coursework (written)	Credits 1		c urrence ummer term	Versio 1	n
Events								
SS 2020	6310427		Exkursion zu Geothermis Nutzung (2 Tage)	sche	1 SWS	Practice (Ü)		Ko

Prerequisites

7.5 Course: Applied Mineralogy: Geomaterials [T-BGU-104811]

 Responsible:
 Prof. Dr. Frank Schilling

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102430 - Applied Mineralogy: Geomaterials

_		Type Written examination	Credits 5	Recurren Each winter		Version 1	
Events							
WS 19/20	6339079	Analytische Verfahre Angewandten Miner		2 SWS	Lectu (VÜ)	re / Practice	Schilling, Schwotzer, Heberling
WS 19/20	6339083	Petrophysik I		2 SWS	Lectu (VÜ)	re / Practice	Schilling, Kontny

Prerequisites

7.6 Course: Borehole Technology [T-BGU-104851]

 Responsible:
 Prof. Dr. Thomas Kohl

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102449 - Borehole Technology

TypeCreditsRecurrenceWritten examination5Each term	Version 1	
--	--------------	--

Events	Events						
WS 19/20	6339095	Borehole-Technology I (Logging) / Logging	2 SWS	Lecture / Practice (VÜ)	Kohl		
SS 2020	6310426	Drilling	2 SWS	Lecture / Practice (VÜ)	Müller, Kohl		

Prerequisites

T 7.7 Course: Brownfield Sites - Investigation, Evaluation, Rehabilitation [T-BGU-100089]

 Responsible:
 Dr.-Ing. Andreas Bieberstein

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-100079 - Environmental Geotechnics

Type	Credits	Recurrence	Version
Oral examination	3	Each winter term	1

Events				
WS 19/20	Brownfield Sites - Investigation, Evaluation, Rehabilitation	2 SWS	Lecture (V)	Bieberstein, Eiche, Würdemann, Mohrlok

Competence Certificate

oral exam, appr. 20 min.

Prerequisites none

Recommendation none

non

Annotation

7.8 Course: Clay Mineralogy Introduction [T-BGU-104839]

 Responsible:
 Dr. Katja Emmerich

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102444 - Applied Mineralogy: Clay Science

	,	Type Written examination	Credits 3	Recurrenc Each winter t		Version 1		
Events	Events							
WS 19/20	6339084	Tonmineralogie Einf	ührung	2 SWS	Lectu (VÜ)	re / Practice	Emmerich	

Prerequisites

7.9 Course: Diagenesis [T-BGU-107559]

 Responsible:
 Prof. Dr. Christoph Hilgers

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-103734 - Diagenesis and Cores

		Type Examination of another type	Credits 3		rrence inter term	Version 1	
Events							
WS 19/20	6339070	Diagenesis		2 SWS	Seminar	(S)	Felder, Busch

Prerequisites

Reservoir-Geology

Annotation

Diagenesis: Seminar as block course during winter term due to requirement of microscope lab and involvement of external lecturer

7.10 Course: Earthworks and Foundation Engineering [T-BGU-100068]

Responsible: N.N.

Organisation:KIT Department of Civil Engineering, Geo- and Environmental SciencesPart of:M-BGU-100068 - Earthworks and Foundation Engineering

Type	Credits	Recurrence	Version
Written examination	4	Each term	2

Events	Events						
WS 19/20	6251701	Foundation Types	2 SWS	Lecture / Practice (VÜ)	N.N.		
WS 19/20	6251703	Basics in Earthworks and Embankment Dams	2 SWS	Lecture / Practice (VÜ)	Bieberstein		

Competence Certificate

written exam, 90 min.

Prerequisites

none

Recommendation

preparation of the student research project for examination preparation

Annotation

Prerequisites none

7.13 Course: Engineering Geologie: Laboratory and Field Methods [T-BGU-104814]

Responsible: Prot Organisation: KIT Part of: M-E

ble: Prof. Dr. Philipp Blum

KIT Department of Civil Engineering, Geo- and Environmental Sciences
 M-BGU-102434 - Engineering Geology: Laboratory and Field Methods

Type	Credits	Recurrence	Version
Oral examination	7	Each term	1

Events	Events							
WS 19/20	6339112	Ingenieurgeologisches Laborpraktikum	2 SWS	Practice (Ü)	Menberg, Blum, Rau, Schweizer			
SS 2020	6310404	Ingenieurgeologisches Geländepraktikum/ Engineering Geological	3 SWS	Practice (Ü)	Blum, Menberg, Schweizer			

Prerequisites

7.14 Course: Engineering Geology: Mass Movements [T-BGU-110724] Т

Responsible: Dr. Kathrin Menberg Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences M-BGU-102442 - Engineering Geology: Mass Movements and Modelling Part of:

		Type Completed coursework	Credits 2	Recurrer Each winter		Version 1		
Events								
WS 19/20	6339082	Massenbewegungen		2 SWS	Lecture	(V)	Menberg	

7.15 Course: Engineering Geology: Modelling [T-BGU-110725]

 Responsible:
 Dr. Kathrin Menberg

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102442 - Engineering Geology: Mass Movements and Modelling

Type	Credits	Expansion	Version
Examination of another type	3	1 terms	1

Events							
SS 2020	6310413	Numerische Modellierung in der Ingenieurgeologie	2 SWS	Lecture / Practice (VÜ)	Blum, Menberg, Chaparro Sánchez		

7.16 Course: Environmental Geology: Radio- & Chemotoxic Elements [T-BGU-107560]

Responsible: Organisation: Part of:

sible: Dr. Frank Heberling

tion: KIT Department of Civil Engineering, Geo- and Environmental Sciencesrt of: M-BGU-102455 - Environmental Geology: Radio- & Chemotoxic Elements

Entsorgung radio- und chemotoxischer Abfälle

	Type Written examination	Credits 3 E	Recurren Each winter		
-			•		
6339088	Geowissenschaftliche Aspekte der		2 SWS	Lecture (V)	Heberling, Metz

Prerequisites	

none

Events WS 19/20

7.17 Course: Environmental Mineralogy [T-BGU-109325]

 Responsible:
 Prof. Dr. Stefan Norra

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-104466 - Environmental Mineralogy

Type	Credits	Recurrence	Expansion	Version	
Examination of another type	5	Each winter term	2 terms	1	

Events						
WS 19/20	6339198	Umweltmineralogie	2 SWS	Lecture (V)	Norra, Rühr	
SS 2020	6339201	Übungen zur Umweltmineralogie	2 SWS	Practice (Ü)	Norra, Rühr	

7.18 Course: Field Course Applied Structural Geology [T-BGU-107508]

 Responsible:
 Prof. Dr. Agnes Kontny

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102451 - Structural Geology

Strukturgeologie

Prerequisites

none

Events SS 2020

7.19 Course: Field Excercise / Excursion [T-BGU-104878] Т **Responsible:** Prof. Dr. Armin Zeh Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-102456 - Field Excercises / Excursion **Type** Examination of another type Credits Version Recurrence Each summer term 5 1 **Events** SS 2020 6310460 Geowissenschaftliche 5 SWS Practice (Ü) Zeh

Geländeübung/ Exkursion

Prerequisites

7.20 Course: Field Trip General Geothermics [T-BGU-107635] Т

Prof. Dr. Thomas Kohl **Responsible:** Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-102432 - Geothermics: Energy and Transport Processes

		Type Completed coursework	Credits 0	Recurre Each winte		Version 1	
Events							
WS 19/20	6339092	General Geothermics Exercises	Field	SWS	Excurs	ion (EXK)	Kohl

7.21 Course: Field Trip Karst Hydrogeology [T-BGU-110413]

 Responsible:
 Prof. Dr. Nico Goldscheider

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-105150 - Hydrogeology: Karst and Isotopes (with Field Trip)

		Comple	Type ted coursework (written)	Credits 2		u rrence ummer term	Version 1	1
Events								
SS 2020	6339078		Exkursion zur Karsthydrogeologie/ Field Trip Karst Hydrogeology		1 SWS	Practice (Ü)		Goldscheider

7.22 Course: Geochemical Processes and Analytical Methods [T-BGU-108192]

 Responsible:
 Dr. Elisabeth Eiche

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-103995 - Geochemical Processes and Analytical Methods

Type	Credits	Recurrence	Version
Examination of another type	5	Each summer term	2

Events					
SS 2020	6310405	Geochemical element cycling	2 SWS	Lecture (V)	Eiche, Patten
SS 2020	6310410	Analytical geochemistry (advanced level)	2 SWS	Practical course (P)	Eiche, Kolb, Patten, Walter, Kluge

T 7.23 Course: Geological Mapping and Processing of Geospatial Data [T-BGU-104819]

Responsible:apl. Prof. Dr. Kirsten DrüppelOrganisation:KIT Department of Civil Engineering, Geo- and Environmental SciencesPart of:M-BGU-102437 - Geological Mapping and Processing of Geospatial Data

Type		Credits	Re	currence		Version
50-102437 - Geologica	гмарри	ig and Floor	essing o	i Geospatiai D	ala	I

		Examination of another type	8		Each summer term		
Events							-
SS 2020	6310399		Digitale Geoinformationsverarbeitung/ Processing of Geospatial Data		Practice (Ü)		Menberg
SS 2020	6310401	Geologische Kartierübu Fortgeschrittene/ Advar Geological Mapping (fie	nced	4 SWS	Practice (Ü	Ĵ)	Grimmer, Drüppel

Prerequisites

7.24 Course: Geological Storage of Gas [T-BGU-104841]

 Responsible:
 Prof. Dr. Frank Schilling

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102445 - Geological Storage of Gas

TypeCreditsRecurrenceVersionExamination of another type5Each summer term3

Events					
SS 2020	6339093	Grundlagen der Gasspeicherung/ Geological Storage of Gas	2 SWS	Lecture (V)	Schilling
SS 2020	6339094	Grundlagen der Reservoirgeomechanik	2 SWS	Lecture (V)	Schilling, Müller

7.25 Course: Geology [T-BGU-104812]

Responsible: Prof. Dr. Christoph Hilgers

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102431 - Geology

TypeCreditsRecurrenceVersionWritten examination5Each winter term1

Events						
WS 19/20	6339080	Analysis of Geological Structures	3 SWS	Lecture / Practice (VÜ)	Hilgers	
WS 19/20	6339086	Depositional Systems	1 SWS	Lecture (V)	Hilgers	

Prerequisites

7.26 Course: Geotechnical Engineering [T-BGU-107465]

Responsible: N.N.

Organisation:KIT Department of Civil Engineering, Geo- and Environmental SciencesPart of:M-BGU-103698 - Geotechnical Engineering

Type

		Written examination	11	Each ter	m	1	
Events							
WS 19/20	6200515	Basics in Foundation E	Engineering	2 SWS	Lec	ture (V)	Kudella
WS 19/20	6200516	Exercises to Basics of Engineering	Foundation	2 SWS	Pra	ctice (Ü)	Kudella
WS 19/20	6200517	Tutorial to Basics in Foundation Engineering		2 SWS	Tute	orial (Tu)	N.N.
SS 2020	6200415	Basics in Soil Mechani	CS	2 SWS	Lec	ture (V)	Niemunis
SS 2020	6200416	Exercises to Basics in Mechanics	Soil	2 SWS	Pra	ctice (Ü)	Niemunis, Kimmig
SS 2020	6200417	Tutorials to Basics in S Mechanics	Soil	2 SWS	Tute	orial (Tu)	Mitarbeiter/innen

Credits

Recurrence

Version

Competence Certificate

written exam, 150 min.

Prerequisites

none

Recommendation

The preparation of voluntary term papers is strongly recommended as preparation for the examination.

Annotation

Events				
WS 19/20	6339118	Geothermal Reservoir Engineering - Seminar	1 SWS	Kohl, Gaucher, Grimmer, Gholamikorzani, Held

Competence Certificate

The assessment consists of an oral presentation

Prerequisites

Competence Certificate

The assessment consists of a written exam (90 minutes) (following §4(2), of the examination regulation).

Prerequisites

Events					
WS 19/20	6339090	Energy Budget of the Earth	1 SWS	Lecture (V)	Schilling
WS 19/20	6339091	General Geothermics	2 SWS	Lecture (V)	Kohl

Prerequisites

7.30 Course: Ground Water and Earth Dams [T-BGU-100091]

Responsible: Dr.-Ing. Andreas Bieberstein Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-100073 - Ground Water and Earth Dams

Type	Credits	Recurrence	Version
Oral examination	6	Each term	1

Events						
SS 2020	6251814	Geotechnical Ground Water Problems	2 SWS	Lecture / Practice (VÜ)	Bieberstein	
SS 2020	6251816	Embankment Dams (Advanced)	2 SWS	Lecture / Practice (VÜ)	Bieberstein	

Competence Certificate

oral exam, appr. 40 min.

Prerequisites none

Recommendation none

Annotation

none

Applied Geosciences Master 2016 (Master of Science (M.Sc.)) Module Handbook as of 19.02.2020

7.31 Course: Hydrogeology: Field and Laboratory Methods [T-BGU-104834] Т

Responsible: Dr. rer. nat. Nadine Göppert Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-102441 - Hydrogeology: Field and Laboratory Methods

		Type Examination of another type	Credits 5		irrence mmer term	Version 1	
Events							
SS 2020	6310412	Gelände- und Laborüb and Laboratory Exercis	0	2 SWS	Practice (U	(נ	Göppert
SS 2020	6310414	Vorbereitendes Semina Preparatory Workshop		1 SWS	Seminar (S	S)	Göppert

Prerequisites

none

Annotation

It is mandatory to choose the module "Hydrogeology: Methods and Applications" as a requirement for this module, since it addresses the theoretical and practical background.

7.32 Course: Hydrogeology: Groundwater Modelling [T-BGU-104757]

Responsible:	Dr. Tanja Liesch
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	M-BGU-102439 - Hydrogeology: Groundwater Modelling

Type	Credits	Recurrence	Version	
Examination of another type	5	Each winter term	1	

Events					
WS 19/20	6339113	Groundwater Modeling	2 SWS	Lecture (V)	Liesch, Schäfer
WS 19/20	6339114	Practice Groundwater Modeling	2 SWS	Practice (Ü)	Liesch, Schäfer

Prerequisites

It is mandatory to choose the module "Hydrogeology: Methods and Applications" as a requirement for this module, since it addresses the theoretical and practical background.

7.33 Course: Hydrogeology: Karst and Isotopes [T-BGU-104758]

Responsible: Prof. Dr. Nico Goldscheider Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-102440 - Hydrogeology: Karst and Isotopes M-BGU-105150 - Hydrogeology: Karst and Isotopes (with Field Trip)

Type	Credits	Recurrence	Version
Written examination	5	Each term	1

Events					
WS 19/20	6339076	Karsthydrogeologie	2 SWS	Lecture / Practice (VÜ)	Goldscheider
SS 2020	6310411	Isotopenmethoden in der Hydrogeologie / Isotope Methods in Hydrologeology	1 SWS	Lecture / Practice (VÜ)	Himmelsbach

Competence Certificate

Written Exam, 90 min.

Recommendation

Module "Hydrogeology: Methods and Applications" passed successfully

7.34 Course: Hydrogeology: Methods and Applications [T-BGU-104750]

Responsible: Prof. Dr. Nico Goldscheider Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-102433 - Hydrogeology: Methods and Applications

Type	Credits	Recurrence	Version
Written examination	7	Each term	1

Events					
WS 19/20	6339081	Angewandte Hydrogeologie	2 SWS	Lecture / Practice (VÜ)	Goldscheider, Göppert
WS 19/20	6339087	Regionale Hydrogeologie	1,5 SWS	Lecture (V)	Goldscheider, Göppert
SS 2020	6339081	Hydraulische Methoden/ Hydraulic Methods	1,5 SWS	Lecture / Practice (VÜ)	Liesch

Prerequisites

7.35 Course: Industrial Minerals and Environment [T-BGU-108191]

 Responsible:
 Prof. Dr. Jochen Kolb

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-103993 - Industrial Minerals and Environment

		Type Examination of another type	Credits 5		rrence nter term	Version 1	
Events							
WS 19/20	6310124	Industrial Minerals		2 SWS	Lecture / (VÜ)	Practice	Kolb, Patten
WS 19/20	6339098	Umweltaspekte der Rohstoffgewinnung		1 SWS	Lecture (V)	Eiche

Prerequisites

keine

Competence Certificate

The assessment consists of an oral exam (30 min) taking place at a specific date.

The re-examination is offered at a specific date.

Prerequisites

None

Events SS 2020

7.38 Course: Introduction to Project Management [T-BGU-107639]

 Responsible:
 Prof. Dr. Christoph Hilgers

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102438 - Project Study

Projektmanagements

	Type Completed coursework	Credits 0	Recurre Each summ		Version 1
6339083	Grundlagen des		1 SWS	Lecture	(V)

Applied Geosciences	Master 2016 (Master of Science (M.Sc.))
Module Handbook as	of 19.02.2020

Organisation: KIT Department of Chemistry and Biosciences Part of: M-CHEMBIO-104581 - Physical Chemistry for Applied Geosciences

		Type Oral examination	Credits 5	Recurre Each winte		Expansion 1 terms	Version 1	
Events		1						
WS 19/20	5229		ch-chemisch für Angewar ischaften		8 SWS	Practical co	urse (P)	Böttcher, Nattlar Unterreiner, Die Dozenten des In
SS 2020	5229		ch-chemisches i für Angewandte nschaften		8 SWS	Practical co	urse (P)	Böttcher, Nattlar Unterreiner, Die Dozenten des Ir

Prerequisites acc. to lecturer

7.40 Course: Landfills [T-BGU-100084]

Responsible: Dr.-Ing. Andreas Bieberstein

Organisation:KIT Department of Civil Engineering, Geo- and Environmental SciencesPart of:M-BGU-100079 - Environmental Geotechnics

Type	Credits	Recurrence	Version
Oral examination	3	Each winter term	1

Events								
WS 19/20	6251913	Landfills	2 SWS	Lecture / Practice (VÜ)	Bieberstein			

Competence Certificate

oral exam, appr. 20 min.

Prerequisites

none

Recommendation none

Annotation none

7.41 Course: Master Thesis [T-BGU-107516] Т **Responsible:** Prof. Dr. Philipp Blum Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-103726 - Module Master Thesis **Type** Final Thesis Credits Version Recurrence 30 Each term 1 **Final Thesis**

This course represents a final thesis. The following periods have been supplied:

Submission deadline	6 months
Maximum extension period	3 months
Correction period	8 weeks

7.42 Course: Microstructures [T-BGU-107507]

 Responsible:
 Prof. Dr. Agnes Kontny

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102451 - Structural Geology

Type	Credits	Recurrence	Version
Examination of another type	3	Each summer term	1

Events							
SS 2020	6339085	Mikrogefüge von Gesteinen / Microstructures	2 SWS	Lecture / Practice (VÜ)	Kontny		

Prerequisites

7.43 Course: Mineral and Rock Physics [T-BGU-104838]

 Responsible:
 Prof. Dr. Frank Schilling

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102443 - Applied Mineralogy: Petrophysics

		Exami	TypeCreditsExamination of another type5		RecurrenceVersionEach summer term2			
Events								
SS 2020	6310428		Petrophysik II		3 + 1 Lecture / Practice SWS (VÜ)		ractice	Schilling

Prerequisites

7.44 Course: Mineral Exploration [T-BGU-110833] Т **Responsible:** Dr. Clifford Patten Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-105357 - Mineral Exploration Credits Version Туре Recurrence Expansion Examination of another type Each summer term 1 terms 5 1 **Events** Lecture / Practice SS 2020 6321410 4 SWS Patten **Mineral Exploration** (VÜ)

Competence Certificate

Report (after preliminary review), see module description

Prerequisites see module description

Recommendation see module description

Annotation see module description

7.45 Course: Mineral Materials [T-BGU-104856]

Responsible: Dr. Matthias Schwotzer

Organisation:KIT Department of Civil Engineering, Geo- and Environmental SciencesPart of:M-BGU-102453 - Mineral Materials

TypeCredOral examination5	itsRecurrence Each termVersion 1
---------------------------	--

Events								
WS 19/20 6339089 Mineralische Bindemittel im Bauwesen		2 SWS	Lecture (V)	Schwotzer				
SS 2020	6310419	Werkstoffschädigende Reaktionen	2 SWS	Lecture (V)	Schwotzer			

Prerequisites

7.46 Course: Numerical Methods in Geosciences [T-BGU-104816] Т

Prof. Dr. Thomas Kohl **Responsible:** Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-102436 - Numerical Methods in Geosciences

		Type Written examination	Credits 6	Recurrenc Each winter t		Version 1			
Events									
WS 19/20	6339078	Numerical Methods	in Geoscience	s 4 SWS	Lectu (VÜ)	re / Practice	Kohl, Gaucher		

Prerequisites

none

7.47 Course: Ore Geology of Metals [T-BGU-109345] Т **Responsible:** Prof. Dr. Jochen Kolb Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-103994 - Ore Geology of Metals **Type** Oral examination Credits Expansion Version Recurrence Each winter term 1 terms 5 1 **Events** WS 19/20 6339099 3 SWS Lecture / Practice Kolb, Patten Ore-forming processes (VÜ)

7.48 Course: Petrology [T-BGU-104854]

Responsible: apl. Prof. Dr. Kirsten Drüppel

Organisation:KIT Department of Civil Engineering, Geo- and Environmental SciencesPart of:M-BGU-102452 - Petrology

Type	Credits	Recurrence	Version
Examination of another type	5	Each summer term	1

Events							
SS 2020 6339104 Gesteinsbildende Prozesse/ Rock forming processes		3 SWS	Lecture (V)	Drüppel			
SS 2020	6339108	Geländeübung/ Field course	1 SWS	Practice (Ü)	Drüppel		

Prerequisites

7.49 Course: Physical Chemistry [T-CHEMBIO-103385]

Organisation: KIT Department of Chemistry and Biosciences Part of: M-CHEMBIO-104581 - Physical Chemistry for Applied Geosciences

Туре	Credits	Version
Written examination	8	1

Events					
WS 19/20	5206	Physikalische Chemie I	4 SWS	Lecture (V)	Kappes, Elstner
WS 19/20	5207	Übungen zur Vorlesung Physikalische Chemie I	2 SWS	Practice (Ü)	Kappes, Elstner, Strelnikov, Assistenten

Prerequisites

7.50 Course: Project Study [T-BGU-104826]

 Responsible:
 Prof. Dr. Philipp Blum

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-102438 - Project Study

		Type Examination of another type	Credits 5		rrence n term	Version 1		
Events	Events							
SS 2020	6339082	Projektstudie/ Project Stud	У	6 SWS	Practice	e (Ü)	Dozenten der Geowissenschaften	

Prerequisites

7.51 Course: Radiogeochemical Field Excercise and Seminar [T-BGU-107623]

Responsible:Dr. Frank HeberlingOrganisation:KIT Department of Civil Engineering, Geo- and Environmental SciencesPart of:M-BGU-102455 - Environmental Geology: Radio- & Chemotoxic Elements

		Type Examination of another type	Credits 2		rrence nmer term	Version 1	
Events							
SS 2020	6339089	Radiogeochemische Geländeübung und Radiogeochemisches	Seminar	2 SWS	Practice (l	(נ	Heberling, Metz

7.52 Course: Reservoir-Analogs and Core Description [T-BGU-107624]

 Responsible:
 Prof. Dr. Christoph Hilgers

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-103734 - Diagenesis and Cores

		Type Examination of another type	Credits 2		r rence mmer term	Version 1	
Events							
WS 19/20	6339071	Reservoir Analogs & C Description	ore	2 SWS	Seminar (S	6)	Schmidt, Hilgers

Prerequisites

Annotation

...

Seminar as block course during winter term due to visit of industry core shed.

7.53 Course: Reservoir-Geology [T-BGU-107563]

 Responsible:
 Prof. Dr. Christoph Hilgers

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-103742 - Reservoir-Geology

TypeCreditsRecurrenceWritten examination5Each summer term	Version 1
---	--------------

Events					
SS 2020	6310600	Reservoir-Geology	2 SWS	Lecture / Practice (VÜ)	Hilgers, Busch
SS 2020	6310601	Field Seminar Reservoir-Geology	4 SWS	Seminar (S)	Hilgers

Prerequisites

none

Recommendation

the student shall have a basic knowledge of sedimentology and structural geology, such as presented in the module Geologie (Geology), MSc 1st semester

7.54 Course: Rock Mechanics and Tunneling [T-BGU-100069]

Responsible: Dr. Carlos Grandas Tavera

Organisation:KIT Department of Civil Engineering, Geo- and Environmental SciencesPart of:M-BGU-100069 - Rock Mechanics and Tunneling

Type	Credits	Recurrence	Version
Written examination	5	Each term	2

Events					
SS 2020	6251804	Basics in Rock Mechanics	2 SWS	Lecture / Practice (VÜ)	Mutschler
SS 2020	6251806	Basics in Tunnel Construction	2 SWS	Lecture / Practice (VÜ)	Wagner

Competence Certificate

written exam, 90 min.

Prerequisites

none

Recommendation

preparation of the student research project for examination preparation

Annotation

7.55 Course: Sedimentary Petrology [T-BGU-107558] Т **Responsible:** Prof. Dr. Armin Zeh Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-103733 - Sedimentary Petrology **Type** Written examination Credits Version Recurrence Each winter term 5 1 **Events** WS 19/20 6339040 4 SWS Lecture / Practice Zeh Sedimentpetrologie

(VÜ)

Prerequisites

7.56 Course: Structural and Phase Analysis [T-MACH-102170] Т **Responsible:** Dr.-Ing. Susanne Wagner Organisation: KIT Department of Mechanical Engineering M-BGU-105236 - Structural and Phase Analysis Part of: Version Туре Credits Recurrence Oral examination Each winter term 4 1 **Events** WS 19/20 2125763 Structural and phase analysis 2 SWS Lecture (V) Wagner, Hinterstein

Competence Certificate

Oral examination

Prerequisites

7.57 Course: Structural Ceramics [T-MACH-102179] Т Prof. Dr. Michael Hoffmann **Responsible:** Organisation: KIT Department of Mechanical Engineering Part of: M-BGU-105223 - Structural Ceramics Version Туре Credits Recurrence Oral examination 4 Each summer term 1 **Events** Lecture (V) SS 2020 2126775 **Structural Ceramics** 2 SWS Hoffmann

Competence Certificate

Oral examination, 20 min

Prerequisites

7.58 Course: Student Research Project 'Earthworks and Foundation Engineering' [T-BGU-100178]

 Responsible:
 Dr.-Ing. Andreas Bieberstein

 N.N.
 N.N.

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100068 - Earthworks and Foundation Engineering

Type	Credits	Recurrence	Version
Completed coursework	2	Each winter term	2

Events					
WS 19/20	6251701	Foundation Types	2 SWS	Lecture / Practice (VÜ)	N.N.
WS 19/20	6251703	Basics in Earthworks and Embankment Dams	2 SWS	Lecture / Practice (VÜ)	Bieberstein

Competence Certificate

report appr. 45 pages;

definition of a project available from lecturer

Prerequisites

none

Recommendation none

Annotation none

7.59 Course: Student Research Project 'Rock Mechanics and Tunneling' [T-BGU-100179]

 Responsible:
 Dr. Carlos Grandas Tavera

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences University

Part of: M-BGU-100069 - Rock Mechanics and Tunneling

Type	Credits	Recurrence	Version
Completed coursework	1	Each summer term	2

Events					
SS 2020	6251804	Basics in Rock Mechanics	2 SWS	Lecture / Practice (VÜ)	Mutschler
SS 2020	6251806	Basics in Tunnel Construction	2 SWS	Lecture / Practice (VÜ)	Wagner

Competence Certificate

report appr. 15 pages;

definition of a project available from lecturer

Prerequisites

none

Recommendation none

Annotation

7.60 Course: Thermal Use of Groundwater [T-BGU-106803] Т **Responsible:** Prof. Dr. Philipp Blum Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-103408 - Thermal Use of Groundwater **Type** Oral examination Credits Version Recurrence Each winter term 4 2 **Events** Lecture / Practice WS 19/20 6339115 2 SWS Blum Thermal Use of Groundwater (VÜ)

Competence Certificate

The assessment consists of an oral exam (approx. 25 min), according to § 4 Par. 2 No. 2.

7.61 Course: Urban Ecology [T-BGU-103001]

Responsible:	Stefan Norra
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	M-BGU-101568 - Urban Ecology

TypeCreditsRecurrenceVersionExamination of another type3Each winter term4

Events					
WS 19/20	6111211	Seminar Stadtökologie	2 SWS	Seminar (S)	Norra, Böhnke

Prerequisites

None

Г

Recommendation None

Annotation None

7.62 Course: Urban Ecology Lecture [T-BGU-106684] Т Prof. Dr. Stefan Norra **Responsible:** Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-101568 - Urban Ecology Credits Version Туре Recurrence Completed coursework (written) Each summer term 3 4 Events

Events					
SS 2020 6	6111211	Stadtökologie	2 SWS	Lecture (V)	Norra

Prerequisites None

Recommendation None

Annotation None

7.63 Course: Urban Ecology Practical Course [T-BGU-106685]

 Responsible:
 Prof. Dr. Stefan Norra

 Organisation:
 KIT Department of Civil Engineering, Geo- and Environmental Sciences

 Part of:
 M-BGU-101568 - Urban Ecology

TypeCreditExamination of another type6	its Recurrence Each summer term	Version 2	
--	------------------------------------	--------------	--

SS 2020 6111213 Stadtökologie 3 SWS Practical course (P) Norra, Gebhardt	Events					
	SS 2020	6111213	Stadtökologie	3 SWS	Practical course (P)	Norra, Gebhardt

Prerequisites None

Recommendation None

Annotation None

7.64 Course: Water and Energy Cycles [T-BGU-106596] Т

Responsible: Prof. Dr.-Ing. Erwin Zehe Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences Part of: M-BGU-103360 - Water and Energy Cycles

Type Oral examination

Events					
WS 19/20	6224702	Water and Energy Cycles in Hydrological Systems: Processes, Predictions and Management	4 SWS	Lecture / Practice (VÜ)	Zehe

Competence Certificate

oral exam, appr. 30 min.

Prerequisites

none

Recommendation none

Annotation

7.65 Course: Water Chemistry and Water Technology [T-CIWVT-107585]

 Responsible:
 Prof. Dr. Harald Horn

 Organisation:
 KIT Department of Chemical and Process Engineering

 Part of:
 M-CIWVT-103753 - Water Chemistry and Water Technology

Type	Credits	Recurrence	Version
Oral examination	10	Each term	1

Events					
WS 19/20	22603	Scientific principles for water quality assessment	2 SWS	Lecture (V)	Abbt-Braun
WS 19/20	22621	Water Technology	2 SWS	Lecture (V)	Horn
WS 19/20	22622	Excersises to Water Technology	1 SWS	Practice (Ü)	Horn, und Mitarbeiter

Prerequisites

None

7.66 Course: Water Technology [T-CIWVT-106802]

 Responsible:
 Prof. Dr. Harald Horn

 Organisation:
 KIT Department of Chemical and Process Engineering

 Part of:
 M-CIWVT-103407 - Water Technology

Type	Credits	Recurrence	Version
Oral examination	6	Each winter term	1

Events					
WS 19/20	22621	Water Technology	2 SWS	Lecture (V)	Horn
WS 19/20	22622	Excersises to Water Technology	1 SWS	Practice (Ü)	Horn, und Mitarbeiter