Table Of Contents

1. Welcome to the new Module Handbook... 5
2. Qualification Goals of the Master Applied Geosciences... 6
3. About this Handbook - Notes and Rules ... 7
4. Overview MSc Profile Energy - Resources - Storage ... 10
5. Field of study structure ... 12
 5.1. Master Thesis ... 12
 5.2. Key Competences in Geosciences ... 12
 5.3. Specialization in Geosciences .. 13
 5.4. Specific Supplements .. 13
6. Modules .. 14
 6.2. Applied Geothermics - M-BGU-102447 ... 15
 6.3. Applied Mineralogy: Clay Science - M-BGU-102444 16
 6.4. Applied Mineralogy: Geomaterials - M-BGU-102430 17
 6.5. Applied Mineralogy: Petrophysics - M-BGU-102443 19
 6.7. Current Research Topics in Hydrogeology and Engineering Geology - M-BGU-105506 .. 21
 6.8. Diagenesis and Cores - M-BGU-103734 .. 22
 6.11. Electron Microscopy II - M-PHY-103761 .. 26
 6.12. Engineering Geology: Laboratory and Field Methods - M-BGU-102434 27
 6.16. Environmental Mineralogy - M-BGU-104466 ... 31
 6.17. Field Excercises / Excursion - M-BGU-102456 ... 32
 6.18. Geochemical Processes and Analytical Methods - M-BGU-103995 33
 6.21. Geology - M-BGU-102431 ... 36
 6.22. Geospatial Data Analysis I – Programming and Geostatistics - M-BGU-105505 .. 37
 6.27. Hydrogeology: Field and Laboratory Methods - M-BGU-102441 43
 6.29. Hydrogeology: Karst and Isotopes - M-BGU-102440 45
 6.30. Hydrogeology: Karst and Isotopes (with Field Trip) - M-BGU-105150 46
 6.31. Hydrogeology: Methods and Applications - M-BGU-102433 47
 6.32. Industrial Minerals and Environment - M-BGU-103993 48
 6.33. Internship - M-BGU-103996 ... 50
 6.34. Introduction to Ceramics - M-BGU-105222 ... 51
 6.35. Mineral Exploration - M-BGU-105357 ... 52
 6.40. Petrology - M-BGU-102452 ... 58
 6.41. Physical Chemistry for Applied Geosciences - M-CHEMBIO-104581 ... 59
 6.42. Project Study - M-BGU-102438 ... 60
 6.43. Reservoir-Geology - M-BGU-103742 ... 61
 6.45. Sedimentary Petrology - M-BGU-103733 .. 64
 6.46. Structural and Phase Analysis - M-BGU-105236 65
 6.47. Structural Ceramics - M-BGU-105223 .. 66
 6.48. Structural Geology - M-BGU-102451 .. 67
 6.49. Thermal Use of Groundwater - M-BGU-103408 68
7. Courses .. 74

7.1. Advanced Analysis in GIS - T-BGU-101782 .. 74
7.2. Advanced Clay Mineralogy - T-BGU-104840 .. 75
7.3. Applied Geothermics - T-BGU-108017 ... 76
7.4. Applied Geothermics - Excursion - T-BGU-108018 77
7.5. Applied Mineralogy: Geomaterials - T-BGU-104811 78
7.6. Borehole Technology - T-BGU-104851 ... 79
7.7. Brownfield Sites - Investigation, Evaluation, Rehabilitation - T-BGU-100089 80
7.8. Clay Mineralogy Introduction - T-BGU-104839 81
7.9. Current Research Topics in Hydrogeology and Engineering Geology - T-BGU-111067 ... 82
7.10. Diagenesis - T-BGU-107559 .. 83
7.11. Earthworks and Foundation Engineering - T-BGU-100068 84
7.13. Electron Microscopy II - T-PHYS-107600 ... 86
7.14. Engineering Geologie: Laboratory and Field Methods - T-BGU-104814 87
7.16. Engineering Geology: Modelling - T-BGU-110725 89
7.17. Environmental Geology: Radio- & Chemotoxic Elements - T-BGU-107560 ... 90
7.18. Environmental Mineralogy - T-BGU-109325 .. 91
7.20. Field Exercise / Excursion - T-BGU-104878 .. 93
7.21. Field Trip General Geothermics - T-BGU-107635 94
7.22. Field Trip Karst Hydrogeology - T-BGU-110413 95
7.23. Geochemical Processes and Analytical Methods - T-BGU-108192 96
7.24. Geological Mapping and Processing of Geospatial Data - T-BGU-104819 ... 97
7.27. Geospatial Data Analysis I – Programming and Geostatistics - T-BGU-111066 ... 100
7.28. Geotechnical Engineering - T-BGU-107465 .. 101
7.29. Geothermal Reservoir Engineering - Seminar - T-BGU-110428 102
7.30. Geothermal Reservoir Engineering - Topics - T-BGU-110427 103
7.32. Ground Water and Earth Dams - T-BGU-100091 105
7.33. Hydrogeology: Field and Laboratory Methods - T-BGU-104834 106
7.34. Hydrogeology: Groundwater Modelling - T-BGU-104757 107
7.35. Hydrogeology: Karst and Isotopes - T-BGU-104758 108
7.36. Hydrogeology: Methods and Applications - T-BGU-104750 109
7.37. Industrial Minerals and Environment - T-BGU-108191 110
7.38. Internship - T-BGU-108210 .. 111
7.39. Introduction to Ceramics - T-MACH-100287 .. 112
7.40. Introduction to Project Management - T-BGU-107639 113
7.41. Laboratory Work in Physical Chemistry - T-CHEMBIO-109395 114
7.42. Landfills - T-BGU-100084 .. 115
7.43. Master Thesis - T-BGU-107516 ... 116
7.44. Microstructures - T-BGU-107507 ... 117
7.45. Mineral and Rock Physics - T-BGU-104838 .. 118
7.46. Mineral Exploration - T-BGU-110833 ... 119
7.47. Mineral Materials - T-BGU-104856 ... 120
7.48. Numerical Methods in Geosciences - T-BGU-104816 121
7.49. Ore Geology of Metals - T-BGU-109345 .. 122
7.50. Petrology - T-BGU-104854 ... 123
7.51. Physical Chemistry - T-CHEMBIO-103885 ... 124
7.52. Project Study - T-BGU-104826 ... 125
7.53. Radiogeochemical Field Exercise and Seminar - T-BGU-107623 126
7.54. Reservoir-Analogs and Core Description - T-BGU-107624 127
7.55. Reservoir-Geology - T-BGU-107563 .. 128
7.56. Rock Mechanics and Tunneling - T-BGU-100069 129
7.57. Sedimentary Petrology - T-BGU-107558 .. 130
7.58. Structural and Phase Analysis - T-MACH-102170	131
7.59. Structural Ceramics - T-MACH-102179	132
7.60. Student Research Project 'Earthworks and Foundation Engineering' - T-BGU-100178	133
7.61. Student Research Project 'Rock Mechanics and Tunneling' - T-BGU-100179	134
7.62. Thermal Use of Groundwater - T-BGU-106803	135
7.63. Urban Ecology - T-BGU-103001	136
7.64. Urban Ecology Lecture - T-BGU-106684	137
7.65. Urban Ecology Practical Course - T-BGU-106685	138
7.66. Water and Energy Cycles - T-BGU-106596	139
7.67. Water Chemistry and Water Technology - T-CIWVT-107585	140
7.68. Water Technology - T-CIWVT-106802	141
1. Welcome to the New Module Handbook

We are happy that you have decided to start the Applied Geosciences Master’s Degree Program at the KIT Department of Civil Engineering, Geo- and Environmental Sciences and wish you a good start of the new semester!

If you have any questions relating to your studies, modules, or exams (partial achievements), contact:

Dr. Ruth Haas Nüesch
Study Program Coordination
Building 50.40, Room 122
Phone +49 721 608 44172
ruth.haas@kit.edu

Mirja Lohkamp-Schmitz
Principal Contact Person for Students
Coordination of Exams / Courses and Field Trips
Consulting Hours: Tue + Thu 9 – 12 am
Building 50.40, Room 117
Phone +49 721 608 43316
Fax +49 721 608 43374
mirja.lohkamp-schmitz@kit.edu
2. Qualification Goals of the "Applied Geosciences" Master's Degree Program at KIT

Applied Geosciences have continuously contributed to the development of KIT’s research and teaching activities since its establishment in 1825. At the oldest technical university in Germany, we focus on the sustainable utilization of georesources on and below the Earth’s surface.

You at KIT!

Whether renewable energies, climate protection, water or raw materials for batteries and solar systems - are you interested in the sustainable use of resources? We at the KIT University of Excellence, are one of the few Applied Geoscience Institutes in Germany that reach top positions in international rankings. Here at one of the largest technical research institutions in Europe, you are offered excellent training and will get to know your lecturers personally. Karlsruhe, one of the sunniest cities in Southwest Germany, offers you a high quality of life in one of the economically strongest regions in Europe. Together, we will develop sustainable solutions for the global challenges!

Profiles of the Master’s Degree Program of Applied Geosciences @KIT

Our Applied Geosciences MSc degree program offers three profiles: Energy, Resources, & Storage (ERS), Hydrogeology & Engineering Geology, as well as Mineralogy & Geochemistry (MIG). You can choose your modules from different profiles. The complete ERS profile is offered in English.

Our MSc Profile of Energy, Resources, & Storage - ERS

You will study the sustainable use of geoenergy, georesources, and raw materials and acquire deep understanding of major infrastructure developments, such as geological storage systems. Your broad geoscientific knowledge relating to ERS may be complemented by in-depth knowledge in the areas of groundwater and tunnel construction. You will acquire applied specialist knowledge of high practical relevance and, at the same time, you will learn to handle unknown problems.

We teach what we study in research and study what we teach in the following areas:

- Geoenergy - generation of geothermal energy, use of fossil and chemical energy sources, such as hydrogen, for an increased use of climate-friendly energy sources;
- Raw materials - increasing the security of supply and transparency of raw materials (metals, minerals, and water) for the increased use of renewable energy sources, battery storage systems, and industrial products;
- Large infrastructures - geostorage systems for heat, cold, chemical energy sources, hydropower, greenhouse gases (CCS), repositories, and other subsurface systems.

Your Future

Your commitment and our practice-oriented approach qualify you for jobs in industry, the service sector, in public administration, and for a scientific career (doctorate). The University of Excellence KIT, its excellent research infrastructure in the Helmholtz Association, and our affiliation to the KIT Department of Civil Engineering, Geo-, and Environmental Sciences will enable you to shape your future.
3. About this Handbook – Notes and Rules

3.1. Structure of the MSc Program

3.2. Course Types

3.3. The Module Handbook

3.3.1. Beginning and Completion of a Module
3.3.2. Modules and Partial Achievements
3.3.3. First Use
3.3.4. General or Partial Examinations
3.3.5. Types of Examinations
3.3.6. Repetition of Exams
3.3.7. Additional Modules and Courses

3.4. Further Information

3.1 Structure of the MSc Program

Our two-year MSc program is associated with a work expenditure of 120 credits (ECTS), usually 30 credits per semester. Choose one of the three profiles (i) Energy, Resources, & Storage Systems, (ii) Hydrogeology - Engineering Geology, (iii) Mineralogy - Geochemistry or choose the elective modules according to your interests. In addition to your courses in the amount of 90 credits, you will write your master's thesis of 30 credits at the end of your studies. One credit corresponds to about 30 working hours and covers both courses with your attendance and self-studies. The program consists of a compulsory part of 19 credits and an elective part of 71 credits. The elective part includes three elements (key competences, specializations, subject-related additional studies). The modules consist of assigned courses with the credits corresponding to the respective workload.

This handbook provides information on the profile Energy, Resources & Storage. The language of instruction of this MSc-profile is English. Please refer to the German handbook for further information of the profiles Hydrogeology - Engineering Geology and Mineralogy - Geochemistry.

3.2 Course Types

The master's degree program covers the following types of teaching and learning:

- Lectures (V)
- Exercises (Ü)
- Seminars and field seminars (S and GEL)
- Internships (P)
- Excursions (E)
- Project study, job internship, colloquia, tutorials (TU), master’s thesis

In lectures, contents are mainly conveyed through presentations by the lecturers. In practical exercises, students apply the knowledge acquired in case studies with intensive support by the lecturers. In seminars, knowledge is imparted to small groups of students. This also includes geological seminars in rough terrain. The seminars focus on presentations by students and discussions of special scientific topics. Internships serve to deepen previously acquired theoretical knowledge in practical application or to gain new experience and skills through practical work individually or as member of a group. Excursions are educational trips to selected destinations, such as company visits. Colloquia are special events often held by academic guests, which consist of a lecture and a discussion and in which the students are supposed to take part. In the project study, the students work on a geoscientific problem either individually or in a group under the guidance by lecturers.

In the master’s thesis, the specialist knowledge acquired is applied to a geoscientific problem. The work is supervised by lecturers, but is intended to demonstrate the student’s ability to independently work on, present, and solve geoscientific problems.

3.3 The Module Handbook

The module handbook describes the modules of the study program. It covers
The module handbook does not replace the university calendar which provides information about the variable dates of courses (e.g. time and venue of the course) in every semester

3.3.1. Beginning and Completion of a Module
Each module and each course (partial achievement) within a module can only be chosen once. The student’s performance is proven by a module examination or by examinations/controls of success in courses within the module. Successful completion of a module or course is reflected by either a passed examination (graded or ungraded) or an ungraded coursework with the student’s participation. A module is completed or passed, if the module examination has been passed (grade at least 4.0). The following applies to modules that are completed by examinations in several courses: The module is completed when all required courses (partial achievements) of a module have been passed. The module grade is determined by weighting the predefined credits for each course (partial achievement) within the module. An exception is the master’s thesis module, the credits of which are weighted by a factor of 1.5 when calculating the total grade.

3.3.2. Modules and Partial Achievements
A new module or a new partial achievement results, when the contents or credits of modules / new courses change. Legitimate expectations of all students, who already have successfully completed a course, are protected, which means that they can complete the old module under the conditions, under which they registered (exceptions are governed by the examination board). The decisive factor is the time when the "binding declaration" about the choice of module is made by the student according to Article 5 (2) of the Studies and Examination Regulations. This binding declaration is made when a student registers for the first exam in this module. At the written request of the student to the examination board, the choice of the module or its assignment to the regular curriculum can be changed afterwards. In the current module handbook, the modules and courses are presented in their current version. The version number is given in the module description. Older module versions are available in the previous module manuals at https://www.agw.kit.edu/11368.php

3.3.3. First Use
The so-called "first use" (EV) indicates from / until when a course or module version can be selected in the study schedule. Modules with a date of first use are highlighted in the chapter "Structure of the Course."

3.3.4. General and Partial Examinations
Module examinations may be general or partial examinations. If the module examination is offered as a general examination, examination covers the entire content of the module. If the module examination is subdivided into partial examinations, the module examination consists of individual examinations (partial achievements) in the respective courses. Register for the respective exams online on the Campus Management Portal at https://campus.studium.kit.edu.

3.3.5. Types of Examinations
- Graded exams: Written exams, oral exams, and examinations of another type (e.g. reports, seminar presentations, or the submission of a laboratory or field book).
- Ungraded coursework: Can be repeated several times. The result is indicated as "passed."

3.3.6. Repetition of Exams
Anyone who does not pass a written exam, oral exam, or examination of another type can repeat the exam once. If the repeated examination (in case of written exams, an additional oral exam is carried out) is not passed as well, the entitlement to the examination for the respective module in the study program is lost. The application for a second re-examination (hardship claim) has to be submitted to the examination board in writing within two months after the entitlement is lost at the latest.
3.3.7. Additional Modules and Courses
Students can attend voluntary, additional modules or courses with a maximum of 30 credits from all lectures and courses offered by KIT. Such modules or courses can be included in the certificate at the request of the student to the examination board. The result of the additional modules or courses is not taken into account when completing the degree program or calculating the total grade. When students register for an exam in this additional module or course, they can declare the latter to be an additional achievement. At the written request of the student to the examination board, this can be changed afterwards. More information is given at http://www.agw.kit.edu/downloads/Studiengang/2016_AB_010.pdf.

3.4. Further Information
All information about the legal and official conditions for your studies is given in the relevant Studies and Examination Regulations for the respective degree program. This legally binding information is available under the official announcements of KIT (http://www.sle.kit.edu/amtlicheBekanntmachungen.php) and at http://www.agw.kit.edu/downloads/Studiengang/2016_AB_010.pdf.
4. Overview of the MSc profile Energy, Resources & Storage

Legend:
- Module name
- D - German, E - English, Ex - Excursion, L - Lecture, P - Practical, S - Seminar, GEL - Field Seminar, FB - submission of field book, N - No Exam, OE - Oral Exam, PR - Presentation, WE - Written Exam, WR - Written Report
- summer term x winter term
- room no./seat no.
- module/course
- language of instruction
- type
- contact hrs (SWS)
- CP
- self-study time (hr)
- type of exam
- lecturer
- course number

1.1 Master Thesis
Module Master Thesis
4 Master thesis
WR any
M-BGU-103726

1.2 Compulsary Modules (at least 14CP)

1.2.1 Module in Geosciences

Numerical Methods in Geosciences
E 6
Kohl/Gaucher
M-BGU-102436

Geological Mapping and Processing of Geospatial Data
D,E P 2 2 30 Menberg
M-BGU-102437

Advanced Geological Mapping (field course)
D,E GEL 8 6 60 WR Druppel, Grimme
M-BGU-104012

1.2.2 Project Study or Internship (1 item)

Internship OR ...
5 WR company
M-BGU-1030906

... Project Study
E 5 Blum
M-BGU-104348

1.2.3 Project Study or Internship (1 item)

x x 2 Project Study
E P 0 4.5 135 WR Blum
M-BGU-103982

x x 2 Introduction to Project Management
E S 1 0.5 0 N Hilgers, Busch
M-BGU-103983

1.2 Elective modules (Core Electives - 36 + Electives 1 - 25 + Electives 2 - 10 CP = Total at least 71 CP)

1.2.1 Module in Geosciences

Geothermal Reservoir Engineering
5 Kohl
M-BGU-103093

Environmental Geology: Radio- & Chemotoxic Elements
5 Emmerich
M-BGU-103986

1.2.2 Module in Geosciences

Energy and Transport Processes
E 5 Schilling
M-BGU-103042

General Geothermics
E 5 Hilgers, Busch
M-BGU-103984

1.2.3 Module in Geosciences

Applied Mineralogy: Petrophysics
5 Kohl
M-BGU-103044

Applied Geothermics
5 Kohl
M-BGU-103045

Reservoir-Geomechanics
5 Schilling, Muller
M-BGU-103046

Reservoir-Analogs and Core Description (3 days)
E S 2 3 60 WR Busch, Felder, Hing
M-BGU-103070

Field exercises / Excursion
5 Zeh
M-BGU-102456

Environmental Geology: Radio- & Chemotoxic Elements
5 Heberling
M-BGU-102455

Geothermal Reservoir Engineering
5 Kohl
M-BGU-105136

Sedimentary Petrology
5 Zeh
M-BGU-103733

Industrial Minerals and Environment
5 Kolb
M-BGU-103093

Applied Geothermics
5 Kohl
M-BGU-103044

Geological Storage of Gas
5 Schilling
M-BGU-103045

Geology
5 Hilgers, Busch
M-BGU-103984

Depositional Systems
5 Zeh
M-BGU-102456

Geology
5 Schilling
M-BGU-103044

Reservoir-Geomechanics
5 Schilling, Muller
M-BGU-103046

Reservoir-Analogs and Core Description (3 days)
E S 2 3 60 WR Busch, Felder, Hing
M-BGU-103070

Field exercises / Excursion
5 Zeh
M-BGU-102456

Environmental Geology: Radio- & Chemotoxic Elements
5 Heberling
M-BGU-102455

Geothermal Reservoir Engineering
5 Kohl
M-BGU-105136

Sedimentary Petrology
5 Zeh
M-BGU-103733

Module Handbook as of 21/10/2020
The CP provide information about the workload to be performed by the students.
1 CP = 30 hours.
In the module handbook itself, the CPs can only be displayed in whole numbers, in this table they are also given in 0.5 steps according to the real workload.
5 Field of study structure

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Thesis</td>
<td>30 CR</td>
</tr>
<tr>
<td>Key Competences in Geosciences</td>
<td>55 CR</td>
</tr>
<tr>
<td>Specialization in Geosciences</td>
<td>25 CR</td>
</tr>
<tr>
<td>Specific Supplements</td>
<td>10 CR</td>
</tr>
</tbody>
</table>

5.1 Master Thesis

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-103726 Module Master Thesis</td>
<td>30 CR</td>
</tr>
</tbody>
</table>

Modelled Conditions

The following conditions have to be fulfilled:

1. You need to earn at least 70 credits in the following fields:
 - Specific Supplements
 - Key Competences in Geosciences
 - Specialization in Geosciences

5.2 Key Competences in Geosciences

<table>
<thead>
<tr>
<th>Election block: Compulsory Modules (at least 14 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-102436 Numerical Methods in Geosciences</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-BGU-102437 Geological Mapping and Processing of Geospatial Data</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Election block: Project Study or Internship (1 item)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-103996 Internship</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102438 Project Study</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Election block: Compulsory Elective Modules (at least 36 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-102430 Applied Mineralogy: Geomaterials</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102431 Geology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102432 Geothermics: Energy and Transport Processes</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102433 Hydrogeology: Methods and Applications</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-BGU-102434 Engineering Geology: Laboratory and Field Methods</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-BGU-102440 Hydrogeology: Karst and Isotopes</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-103742 Reservoir-Geology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-103733 Sedimentary Petrology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102445 Geological Storage of Gas</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-103993 Industrial Minerals and Environment</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102442 Engineering Geology: Mass Movements and Modelling</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-103994 Ore Geology of Metals</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-103995 Geochemical Processes and Analytical Methods</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-105150 Hydrogeology: Karst and Isotopes (with Field Trip)</td>
<td>7 CR</td>
</tr>
</tbody>
</table>
5.3 Specialization in Geosciences

Election block: Compulsory Elective Modules (at least 25 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Module</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-102439</td>
<td>Hydrogeology: Groundwater Modelling</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102440</td>
<td>Hydrogeology: Karst and Isotopes</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102441</td>
<td>Hydrogeology: Field and Laboratory Methods</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102442</td>
<td>Engineering Geology: Mass Movements and Modelling</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102443</td>
<td>Applied Mineralogy: Petrophysics</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102444</td>
<td>Applied Mineralogy: Clay Science</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102445</td>
<td>Geological Storage of Gas</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102447</td>
<td>Applied Geothermics</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-105136</td>
<td>Geothermal Reservoir Engineering</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102449</td>
<td>Borehole Technology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102451</td>
<td>Structural Geology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102452</td>
<td>Petrology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102455</td>
<td>Environmental Geology: Radio- & Chemotoxic Elements</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102456</td>
<td>Field Exercises / Excursion</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-103733</td>
<td>Sedimentary Petrology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-103734</td>
<td>Diagenesis and Cores</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-103742</td>
<td>Reservoir-Geology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-102453</td>
<td>Mineral Materials</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-103993</td>
<td>Industrial Minerals and Environment</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-104466</td>
<td>Environmental Mineralogy</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-103994</td>
<td>Ore Geology of Metals</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-103995</td>
<td>Geochemical Processes and Analytical Methods</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CHEMBIO-104581</td>
<td>Physical Chemistry for Applied Geosciences</td>
<td>13 CR</td>
</tr>
<tr>
<td>M-BGU-105357</td>
<td>Mineral Exploration</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-105506</td>
<td>Current Research Topics in Hydrogeology and Engineering Geology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-BGU-105505</td>
<td>Geospatial Data Analysis I – Programming and Geostatistics</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

5.4 Specific Supplements

Election block: Compulsory Elective Modules (at least 10 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Module</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-100068</td>
<td>Earthworks and Foundation Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-BGU-100069</td>
<td>Rock Mechanics and Tunneling</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-BGU-100079</td>
<td>Environmental Geotechnics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-103760</td>
<td>Electron Microscopy I</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-PHYS-103761</td>
<td>Electron Microscopy II</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWVT-103753</td>
<td>Water Chemistry and Water Technology</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-BGU-100073</td>
<td>Ground Water and Earth Dams</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-BGU-103698</td>
<td>Geotechnical Engineering</td>
<td>11 CR</td>
</tr>
<tr>
<td>M-CIWVT-103407</td>
<td>Water Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-BGU-101568</td>
<td>Urban Ecology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-BGU-101053</td>
<td>Advanced Analysis in GIS</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-BGU-103408</td>
<td>Thermal Use of Groundwater</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-BGU-105223</td>
<td>Structural Ceramics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-BGU-105236</td>
<td>Structural and Phase Analysis</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-BGU-105222</td>
<td>Introduction to Ceramics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-BGU-103360</td>
<td>Water and Energy Cycles</td>
<td>6 CR</td>
</tr>
</tbody>
</table>
6 Modules

6.1 Module: Advanced Analysis in GIS (GEOD-MPEA-3) [M-BGU-101053]

 Responsible: Dr.-Ing. Norbert Rösch
 Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
 Part of: Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Each summer term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-101782 | Advanced Analysis in GIS | 4 CR | Rösch |

Competence Certificate
The assessment consists of an oral exam (20 min.)

Competence Goal
The students explain the advanced concepts of spatial analysis and 2D interpolation procedures. Especially the different aspects of statistical reasoning are analyzed. They can categorize all analysis problems with spatial background and estimate possible solutions.

Module grade calculation
The grade of the module is the grade of the oral exam.

Prerequisites
None

Content
After an introduction to analysis in GIS in general, this lecture is dealing with the specific approaches of statistical analysis of spatial data. Among them, in particular, the different methods of pattern analysis. This also encompasses the test strategies inherent to the aforementioned methods. Another topic is data mining, which is introduced as an extension of the point pattern analysis. Furthermore the 2D interpolation procedures are discussed (e.g. Natural Neighbor Interpolation, Kriging, ...).

Workload

Contact hours: 30 hours
- courses plus course-related examination

Self-study: 90 hours
- consolidation of subject by recapitulation of lectures
- processing of exercises
- consolidation of subject by use of references and by own inquiry
- preparations for exam
6.2 Module: Applied Geothermics [M-BGU-102447]

Responsible: Prof. Dr. Thomas Kohl

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-108017</td>
<td>Applied Geothermics</td>
<td>4</td>
<td>Kohl</td>
<td></td>
</tr>
<tr>
<td>T-BGU-108018</td>
<td>Applied Geothermics - Excursion</td>
<td>1</td>
<td>Kohl</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (45min) according to §4 (2) of the examination regulations and a non-assessed coursework (participation in field trip and report), see §4 (3) of the examination regulations.

Competence Goal
- The students develop shallow and deep geothermal projects with cost estimates
- The students are able to explicate examples and case studies in theory and practice

Prerequisites
none

Content
- Introduction into geothermal utilization
- Hydrothermal and enhanced (or engineered) geothermal systems (EGS)
- Stimulation methods
- Geothermal Exploration
- Thermodynamics and power plant processes
- Shallow geothermics
- Examples

Annotation
The date for the excursion and the closing date for the excursion report will be promptly announced.
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
6.3 Module: Applied Mineralogy: Clay Science [M-BGU-102444]

Responsible: Dr. Katja Emmerich
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>CR</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104839</td>
<td>Clay Mineralogy Introduction</td>
<td>3</td>
<td>Emmerich</td>
</tr>
<tr>
<td>T-BGU-104840</td>
<td>Advanced Clay Mineralogy</td>
<td>2</td>
<td>Emmerich</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (Clay Mineralogy Introduction, 90 min) according to §4 (2) of the examination regulations and an examination of another type (Advanced Clay Mineralogy, graded report, ca. 12 pages, submission till 4 weeks after the end of the lecture period).

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Prerequisites
None

Annotation
Depending on the auditorium, this module is held in German or English. The practical part of this course is carried out in presence. It requires special rooms (laboratory) and is essential for the study progress of the participants.

Workload
- contact hours: 60
- self study time: 90
6.4 Module: Applied Mineralogy: Geomaterials [M-BGU-102430]

Responsible: Prof. Dr. Frank Schilling
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Key Competences in Geosciences (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>English</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-104811 | Applied Mineralogy: Geomaterials | 5 CR | Danisi, de la Flor Martin, Schilling |

Competence Certificate
The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations.

To pass the exam, at least 50% of the points must be achieved.

Competence Goal
The students are qualified to apply basic mineralogical approaches to describe and targeted use of geomaterials.

The students have knowledge of basic methods of applied mineralogy:

- about the basics of crystallography, this includes the detailed consideration from point to space groups.
- to describe and visualise the structures of relevant geomaterials.
- to analyse group-subgroup relationships and phase transitions of different geo-materials.

They master basic crystallographic methods and are able to apply these to a technically important group of minerals, the zeolites. The students have:

- a deep understanding of the crystal chemistry of microporous mineral phases.
- advanced knowledge of framework structures and their physico-chemical properties.
- basic knowledge of modern functional materials with key applications in industry.
- the competence to investigate and characterize materials using diffraction techniques.

Module grade calculation
The module grade is the grade of the written examination.

Prerequisites
keine

Content
Modern geoscientific materials research focuses on the relationship between structure and (thus mostly) anisotropic material behaviour. Therefore, a profound understanding of symmetry and structure relationships is the focus of the course, in addition to a detailed process understanding of the mode of action of one of the most important geomaterials - zeolites. These nanoporous materials are of fundamental importance in many technical processes which cannot be imagined without them (from the food industry to petrochemistry).

- Crystallography: from point groups to space groups
- Crystal structures descriptions
- Symmetry relations between crystal structures
- group-subgroup relationships
- phase transitions of different geo-materials
- Zeolite and zeolite-like framework structures
- Industrial applications: molecular sieves, catalysts and ion exchangers.
- Fundamentals of diffraction: Theory and Praxis
- Structural determination of microporous mineral phases

Recommendation
Openness for new ideas and things

Annotation
Enthusiasm and commitment to mineralogical questions are expected

The practical part of this course is carried out in presence. It requires special rooms (laboratory) and is essential for the study progress of the participants.
Workload
60 hours attendance time and 90 hours self-study

Learning type
- Lectures
- Exercises
- Laboratory Exercises
- Self-study
- Discussions

Literature
Will be discussed during the lectures
6.5 Module: Applied Mineralogy: Petrophysics [M-BGU-102443]

Responsible: Prof. Dr. Frank Schilling

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-104838 | Mineral and Rock Physics | 5 CR | Schilling |

Competence Certificate
The assessment consists of an examination of another type (a combination of oral contributions and a written assignment) according to §4 (2) of the examination regulations.

Prerequisites
none

Annotation
Depending on the auditorium, this module is held in German or English

In Abhängigkeit vom Auditorium wird dieses Modul in deutscher oder englischer Sprache gehalten

The practical part of this course is carried out in presence. It requires special rooms (laboratory) and is essential for the study progress of the participants.
6.6 Module: Borehole Technology [M-BGU-102449]

Responsible: Prof. Dr. Thomas Kohl
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104851</td>
<td>Borehole Technology</td>
<td>5 CR Kohl</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations. The oral presentation in the seminar is included in the grade of the written exam.

Competence Goal

- The students are able to characterize reservoirs from logging data.
- The students are able to explain the basics of different drillhole technologies and are able to present results graphically and to evaluate and present them scientifically.

Prerequisites

none

Content

- Logging
 - Introduction into petrophysics, parameter
 - Distribution of fluid/rock parameter around a drillhole
 - Wireline logging
 - Archie’s law
 - Active/passive logs (resistivity, induction, sonic, SP, nuclear methods, imaging)
 - Examples of application

- Drilling
 - Rig installation / rotary drilling method
 - Drilling mud circulation
 - Measurement while drilling (MWD)
 - Logging while drilling (LWD)
 - Well completion
 - Examples of application
Module: Current Research Topics in Hydrogeology and Engineering Geology [M-BGU-105506]

Responsible: Prof. Dr. Nico Goldscheider

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Specialization in Geosciences

Credits: 5

Recurrence: Each term

Language: German

Level: 4

Version: 1

Mandatory

| T-BGU-111067 | Current Research Topics in Hydrogeology and Engineering Geology | 5 CR | Goldscheider |

Competence Certificate

Attendance at current lecture series, excursion report(s) (1 page/day), presentation (20 min)

Competence Goal

The students can name and explain current research topics in hydro- and engineering geology. They are able to analyse, discuss and present current research topics.

Prerequisites

Choice of the profile Hydrogeology and Engineering Geology

Content

- Selected lectures on current research topics in hydro- and engineering geology (e.g. Geologisches Fachgespräch, Karst Lecture, International Distinguished Lectures)
- Changing excursions to current research regions
- Review of a current research topic on the basis of literature, presentation and discussion, accompanying mentoring program

Workload

150 h, of which 70 h attendance time and 80 h self-study time
Module: Diagenesis and Cores [M-BGU-103734]

Responsible: Prof. Dr. Christoph Hilgers

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Specialization in Geosciences

Credits 5

Recurrence Each winter term

Language English

Level 5

Version 1

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107559</td>
<td>Diagenesis</td>
<td>3 CR</td>
<td>Hilgers</td>
</tr>
<tr>
<td>T-BGU-107624</td>
<td>Reservoir-Analogs and Core Description</td>
<td>2 CR</td>
<td>Hilgers</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of partial exams according to §4 (2) of the examination regulations. It consists of two examinations of another type:

1. Diagenesis: Examination: Report (5 p.) on own practical microscopic analysis (4h on the day after the end of the course): petrographic description of sedimentary clastic rock and interpretation, raw data and thin section images. Submission: 2 weeks after end of course.
2. Reservoir-Analogs and Core Description: Report (1 page) and digitized core description plus written notes. Submission 2 weeks after end of course.

Competence Goal

- After this course students will be able to apply a workflow of petrographic analyses especially of sediments (description, quantification etc.), sandstone- and carbonate classification, provenance, evaluation of reservoir characteristics and diagenetic processes. They can critically assess data for sampling campaigns.
- After this course students are enabled to describe reservoir rocks in the field and in cores according to industry standards. They derive facies models and integrate data into state-of-the-art software.

Prerequisites

participation in the module Reservoir-Geology

Content

- Petrography, rock typing and reservoir quality: granulometry, texture and fabric, porosity and porosity loss, primary and secondary porosity, compaction vs. cementation, identification of detrital grains, sandstone classification, intra- and extraclasts, provenance, authigenic mineralogy, quantification via estimation and point counting, sandstone diagenesis, paragenetic sequence and stages of diagenesis, diagenetic processes, geological control factors and burial history, structural diagenesis
- Description of reservoir- and source rocks as well as seals from analogs in the field and reservoir rocks from cores

Recommendation

The student shall have a basic knowledge of reservoir geology

Annotation

The practical part of this course is carried out in presence. The microscopy exercises as well as the field course are essential for the study progress of the participants.

Literature

6.9 Module: Earthworks and Foundation Engineering (bauM5P2-ERDGB) [M-BGU-100068]

Responsible: Dr.-Ing. Peter Kudella
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specific Supplements

Credits: 6
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 4
Version: 2

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100068</td>
<td>Earthworks and Foundation Engineering</td>
<td>4 CR</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-BGU-100178</td>
<td>Student Research Project ‘Earthworks and Foundation Engineering’</td>
<td>2 CR</td>
<td></td>
<td>German</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- ‘Teilleistung’ T-BGU-100178 with not graded accomplishment according to § 4 Par. 3
- ‘Teilleistung’ T-BGU-100068 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective ‘Teilleistung’

Competence Goal
With regard to geotechnical constructions the students are able to select and apply appropriate methods for exploration, modelling, dimensioning, realization and control in the case of complex requirements on average. They can apply this knowledge to earthworks and embankment engineering, can identify all geotechnically relevant problems occurring with dams and can apply self-reliantly design and dimensioning rules in outline. They gained geotechnical competence in solving problems for all kind of constructions in and with unconsolidated rocks, also with respect to the managerial organization, expense budgeting, use of documents and presentation of results.

Module grade calculation
grade of the module is grade of the exam

Prerequisites
none

Content
The module deepens the safety concepts in earthworks and foundation engineering and the project design for foundation problems by means of several examples (foundations on soft soil, variants of construction pit supporting system, stabilization and drainage of embankments, slope stabilization, retaining structure, underpinning) and explains the observation method. Basics of earthworks and foundation engineering are presented such as building materials for dams, design requirements, construction of dams, sealing and stability of filled dams. Further basics are computation of seepage and the evaluation of erosion, suffosion, piping, colmatation and joint erosion.

Recommendation
basic knowledge of Soil Mechanics and Foundation Engineering;
compilation and submission of student research project as examination preparation until examination date

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Foundation Types lecture/exercise: 30 h
- Basics in Earthworks and Embankment Dams lecture/exercise: 30 h

independent study:
- preparation and follow-up lecture/exercises Foundation Types: 10 h
- preparation and follow-up lecture/exercises Basics in Earthworks and Embankment Dams: 10 h
- preparation of student research project: 60 h
- examination preparation: 40 h

total: 180 h
Literature
[1] Witt, K.J. (2008), Grundbau-Taschenbuch, Teil 1,
6.10 Module: Electron Microscopy I [M-PHYS-103760]

Responsible: Jun.-Prof. Dr. Yolita Eggeler
Prof. Dr. Dagmar Gerthsen

Organisation: KIT Department of Physics

Part of: Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-107599</td>
<td>Electron Microscopy I</td>
<td>5</td>
<td>Eggeler, Gerthsen</td>
</tr>
</tbody>
</table>
Module: Electron Microscopy II [M-PHYS-103761]

Responsible: Prof. Dr. Dagmar Gerthsen
Organisation: KIT Department of Physics
Part of: Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-107600</td>
<td>Electron Microscopy II</td>
<td>5</td>
</tr>
</tbody>
</table>
6.12 Module: Engineering Geology: Laboratory and Field Methods [M-BGU-102434]

Responsible: Prof. Dr. Philipp Blum
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Key Competences in Geosciences (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-BGU-104814 Engineering Geologie: Laboratory and Field Methods 7 CR Blum

Competence Certificate
The assessment consists of an oral exam (20 min) according to §4 (2) of the examination regulations and two non-assessed reports (Laboratory and field methods).

Prerequisites
keine

Annotation
The practical part of this course is carried out in presence. The field courses and laboratory courses are essential for the progress of the participants.

Responsible: Dr. Kathrin Menberg

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Key Competences in Geosciences (Compulsory Elective Modules)
Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>German</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module ID</th>
<th>Course Title</th>
<th>Credits</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-110724</td>
<td>Engineering Geology: Mass Movements</td>
<td>2 CR</td>
<td>Menberg</td>
</tr>
<tr>
<td>T-BGU-110725</td>
<td>Engineering Geology: Modelling</td>
<td>3 CR</td>
<td>Menberg</td>
</tr>
</tbody>
</table>

Prerequisites

none
Module: Environmental Geology: Radio- & Chemotoxic Elements [M-BGU-102455]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>German/English</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107560</td>
<td>Environmental Geology: Radio- & Chemotoxic Elements</td>
<td>3 CR</td>
<td>Heberling</td>
</tr>
<tr>
<td>T-BGU-107623</td>
<td>Radiogeochemical Field Exercise and Seminar</td>
<td>2 CR</td>
<td>Heberling</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (90 min) about the lecture and an examination of another type (Seminar as preparation for field exercise (15 min presentation) and report (15-20 pages, submission till 2 months after the exercise)) according to §4 (2) of the examination regulations.

Prerequisites

None

Annotation

Depending on the auditorium, this module is held in German or English.

The practical part of this course is carried out in presence. The field courses and laboratory courses are essential for the progress of the participants.
6.15 Module: Environmental Geotechnics (bauiM5S09-UMGEOTEC) [M-BGU-100079]

Responsible: Dr.-Ing. Andreas Bieberstein
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100084</td>
<td>Landfills</td>
<td>3 CR</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>T-BGU-100089</td>
<td>Brownfield Sites - Investigation, Evaluation, Rehabilitation</td>
<td>3 CR</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate
- ‘Teilleistung’ T-BGU-100084 with oral examination according to § 4 Par. 2 No. 2
- ‘Teilleistung’ T-BGU-100089 with oral examination according to § 4 Par. 2 No. 2

details about the learning control see at the ‘Teilleistung’

Competence Goal
The students can describe the legal guidelines regarding the disposal of wastes and the permitted threshold value for brownfields. They can outline the geotechnical concerns in the construction of landfill sites depending on the particular landfill classification, landfill elements, their relevant requirements and necessary certifications. They are able to interlink interdisciplinarily the chemical, mineralogical, biological, hydraulic and geotechnical aspects dealing with brownfields. They can choose reasonably between the relevant remediation technologies and assess their limits of applications and risks.

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Prerequisites
none

Content
The module covers geotechnical techniques in dealing with waste and brownfields. The environmental engineering, scientific and legal basics are discussed. Working steps of project planning, building materials, ways of construction and proofs are presented. Techniques for burning and immobilisation are explained as well as different microbiological, electrokinetic, hydraulic and pneumatic soil remediation methods.

Recommendation
none

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Landfills lecture/exercise: 30 h
- Brownfield Sites - Investigation, Evaluation, Rehabilitation lecture: 30 h
- Excursion: 10 h

independent study:
- preparation and follow-up lecture/exercises Landfills: 25 h
- examination preparation Landfills (partial exam): 30 h
- preparation and follow-up lectures Brownfield Sites - Investigation, Evaluation, Rehabilitation: 25 h
- examination preparation Brownfield Sites - Investigation, Evaluation, Rehabilitation (partial exam): 30 h

total: 180 h

Literature
DGGT, GDA-Empfehlungen – Geotechnik der Deponien und Altlasten, Ernst und Sohn, Berlin
Drescher (1997), Deponiebau, Ernst und Sohn, Berlin
Reiersloh, D und Reinhard, M. (2010): Altlastenratgeber für die Praxis, Vulkan-V. Essen

Applied Geosciences Master 2016 (Master of Science (M.Sc.))
Module Handbook as of 21/10/2020
Module: Environmental Mineralogy [M-BGU-104466]

Responsible: apl. Prof. Dr. Stefan Norra

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-109325</td>
<td>Environmental Mineralogy</td>
<td>5</td>
<td>Norra</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an examination of another type (graded report about the lecture and the practice) according to §4 (2) of the examination regulations.

Prerequisites
None

Annotation
The practical part of this course is carried out in presence. The field courses and laboratory courses are essential for the progress of the participants.
6.17 Module: Field Excercises / Excursion [M-BGU-102456]

Responsible: Prof. Dr. Armin Zeh

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-BGU-104878</th>
<th>Field Excercise / Excursion</th>
</tr>
</thead>
</table>

Competence Certificate

The assessment consists of an examination of another type according to §4 (2) of the examination regulations. It consists of the participation in field trips (required excursion days: 10) (often international), keeping a field book and different assignments (for example a preparing literature seminar with presentations, daily protocols, reports etc.)

Prerequisites

None

Annotation

The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
6.18 Module: Geochemical Processes and Analytical Methods [M-BGU-103995]

Responsible: Dr. Elisabeth Eiche

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Key Competences in Geosciences (Compulsory Elective Modules)
Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>German/English</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-108192</td>
<td>Geochemical Processes and Analytical Methods</td>
<td>5 CR</td>
<td>Eiche</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an examination of another type (ca. 10 exercise sheets in ILIAS for the lecture, a short presentation on one analysis method and a 30-45 min presentation in groups of two or three on a given laboratory project for the practise) according to §4 (2) of the examination regulations.

Prerequisites
none

Recommendation
none

Annotation
The practical part of this course is carried out in presence. It requires special rooms (laboratory) and is essential for the study progress of the participants.

Responsible: apl. Prof. Dr. Kirsten Drüppel
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Key Competences in Geosciences (Compulsory Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Each summer term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-BGU-104819 Geological Mapping and Processing of Geospatial Data 8 CR Drüppel

Competence Certificate
The assessment consists of an examination of another type according to §4 (2) of the examination regulations. It consists of field work, creating a geological map and a mapping report.

Prerequisites
keine

Annotation
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
Module: Geological Storage of Gas [M-BGU-102445]

Responsible: Prof. Dr. Frank Schilling

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Key Competences in Geosciences (Compulsory Elective Modules) Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>English</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Exam Type</th>
<th>Exam Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104841</td>
<td>Geological Storage of Gas</td>
<td>5 CR</td>
<td>Schilling</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an examination of another type (presentation) according to §4 (2) of the examination regulations.

Annotation

Depending on the auditorium, this module is held in German or English.

Literature

- IPCC Report zur CO2-Speicherung
- EU Richtlinie zur CO2 Speicherung
6.21 Module: Geology [M-BGU-102431]

Responsible: Prof. Dr. Christoph Hilgers

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Key Competences in Geosciences (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Module</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104812</td>
<td>Geology</td>
<td>5 CR Hilgers</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations.

Competence Goal

- Students will be trained to apply structural geology at an advanced level and using real world examples.
- Students will be trained to link rocks to depositional systems and vice versa.

Prerequisites

Requirements for participation in the module exam: submission of all exercises on time, 80% of them correct.

Content

Applied Structural Geology:
- Stress and Strain
- Fractures and Mohr Circle
- Joints and Veins
- Normal faults
- Thrust faults
- Strike slip faults
- Inversion
- Strain measurements
- Diapirs & Intrusions
- Folds
- Folds and Cleavage
- Microstructures
- Maps / Structural Analysis

Depositional Systems:
- Overview, description of sediments
- Eolian systems
- Fluvial systems
- Estuaries and incised valleys
- Deltas & Clastic Shorelines
- Evaporites
- Clastic shelves
- Reefs and platforms
- Submarine fans and Turbidites
- Sea level change
- Sequence stratigraphy

Literature

Structural Geology

Depositional Systems

Slatt, R.M. 2006. Stratigraphic reservoir characterization for petroleum geologists, geophysicists and engineers. Elsevier 478 pp
Module: Geospatial Data Analysis I – Programming and Geostatistics [M-BGU-105505]

Responsible: Dr. Kathrin Menberg
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-BGU-111066 Geospatial Data Analysis I – Programming and Geostatistics 6 CR Menberg

Competence Certificate
Student research project: programming of a code for data analysis, written documentation (ca. 5 pages)

Competence Goal
Students can use the Python programming language to apply methods for statistical analysis to different geospatial datasets, prepare the results graphically, and discuss and summarize them.

Prerequisites
Choice of the profile Hydrogeology and Engineering Geology

Content
The course is divided into a lecture (2 SWS) and an exercise (2 SWS). The lecture teaches theoretical basics of programming in Python (program structures, database structures, data ethics & licenses, etc.), as well as methods for geostatistical analysis (regression analysis, time series analysis, error analysis, etc.) of spatial and temporal datasets.

The exercise covers the practical aspects of programming, data analysis, visualization and interpretation.

Recommendation
This module should be attended and completed before the module Geodata Analysis II (starting summer term 2021) that builds on it.

Workload
60 h attendance time and 120 h self-study time

Learning type
Lecture and exercise, student research project
6.23 Module: Geotechnical Engineering (bauiBFP7-GEOING) [M-BGU-103698]

Responsible: Dr.-Ing. Peter Kudella
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Each summer term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-BGU-107465 Geotechnical Engineering 11 CR Kudella, Niemunis

Competence Certificate
- 'Teilleistung' T-BGU-107465 with written examination according to § 4 Par. 2 No. 1

details about the learning control see at the 'Teilleistung'

Competence Goal
The students have a scientifically sound understanding of the building material 'soil' with respect to its appearance and mechanical behaviour. They are able to describe the latter on base of soil mechanical and soil hydraulic models, to classify and to analyse respective field and laboratory tests. Because of their knowledge in usual geotechnical construction methods they can self-dependently select, design and describe the construction process for standard applications, such as building foundations, construction pit linings and tunnels adapted to the respective ground and groundwater conditions. Further, they are able to proof self-dependently ultimate limit states and serviceability limit states of those geotechnical constructions and natural slopes and to evaluate the results critically.

Module grade calculation
grade of the module is grade of the exam

Prerequisites
none

Content
The module imparts theoretical principles of soil behavior and demonstrates their practical application in designing of the most common geotechnical constructions. This covers:

- standards, codes and safety concepts in foundation engineering
- subsoil investigation, soil classification, soil properties and soil parameters
- permeability, seepage and groundwater management
- stress distributions in the subsoil, compression behavior and consolidation
- shear resistance of soils, stability of slopes and foundations
- design and settlement calculation of shallow foundations
- earth pressure and earth resistance, design of retaining structures and retaining walls for excavations
- pile foundations, deep foundations and caisson foundations in open water
- methods for soil improvement
- introduction to tunneling

Recommendation
The not graded accomplishment Geology in Civil Engineering [T-BGU-103395] shall be passed.
The attendance of the lecture accompanied tutorials (6200417, 6200517) is recommended. Likewise, the preparation of voluntary term papers is absolutely recommended as follow-up and preparation for the examination.

Annotation
Tutorials are offered accompanying to the lectures, the participation is strongly recommended. Preparation and follow-up of the lectures can be done by ones-own in terms of working on a student research project.
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Basics in Soil Mechanics lecture, exercise, tutorial: 90 h
- Basics in Foundation Engineering lecture, exercise, tutorial: 90 h

independent study:

- preparation and follow-up lectures, exercises Basics in Soil Mechanics: 30 h
- preparation and follow-up lectures, exercises Basics in Foundation Engineering: 30 h
- examination preparation: 90 h

total: 330 h

Literature
Triantafyllidis, Th. (2014): Arbeitsblätter und Übungsblätter Bodenmechanik
Triantafyllidis, Th. (2011): Arbeitsblätter und Übungsblätter Grundbau
Gudehus, G (1981): Bodenmechanik, F. Enke
Kolymbas, D.: Geotechnik, Springer-Verlag 5. Auflage
Module: Geothermal Reservoir Engineering [M-BGU-105136]

Responsible: Dr. Emmanuel Gaucher
PD Dr. Jens Carsten Grimmer
Prof. Dr. Thomas Kohl

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-110427</td>
<td>Geothermal Reservoir Engineering - Topics</td>
<td>3 CR</td>
<td>Gaucher, Grimmer, Kohl</td>
</tr>
<tr>
<td>T-BGU-110428</td>
<td>Geothermal Reservoir Engineering - Seminar</td>
<td>2 CR</td>
<td>Gaucher, Grimmer, Kohl</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of

1. a written exam (90 minutes) (following §4(2) of the examination regulation).
2. oral presentation

Competence Goal

- The students will be able to compare and analyze geothermal systems.
- The students will be able to assess and discuss geothermal systems.
- The student will be able to acquire and present in front of their peers specific knowledge of geothermal systems from the literature and to discuss.

Module grade calculation

The overall grade of the module is the average of the grades for each course weighted by the credits.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-BGU-102432 - Geothermics: Energy and Transport Processes must have been passed.
2. The module M-BGU-102447 - Applied Geothermics must have been passed.

Content

The content of this course contains basics, technologies, and exploration methods of geothermal systems.

- Introduction into geothermal reservoir engineering
- Reservoir geology of crystalline and sedimentary rocks
- Geothermal exploration
- Geothermometry of thermal water
- Scalings
- Induced seismicity
- Seismic monitoring
- Numerical reservoir modelling
- Ground source heat pumps

Annotation

1. Often you will hear the Name “Geothermie III” for this module.
2. Starting from the winter term 2019/2020 this is the new name for the module M-BGU-102448, Topics of Geothermal Research
3. Presentation required

Workload

regular attendance: 50 hours
self study 100 hours
Module: Geothermics: Energy and Transport Processes [M-BGU-102432]

Responsible: Prof. Dr. Thomas Kohl

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Key Competences in Geosciences (Compulsory Elective Modules)

Credits
5

Recurrence
Each winter term

Language
English

Level
4

Version
2

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104813</td>
<td>Geothermics: Energy and Transport Processes</td>
<td>5 CR</td>
<td>Kohl, Schilling</td>
<td></td>
</tr>
<tr>
<td>T-BGU-107635</td>
<td>Field Trip General Geothermics</td>
<td>0 CR</td>
<td>Kohl</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (45 min) according to §4 (2) of the examination regulations and a non-assessed coursework (participation in excursion and report) according to §4 (3) of the examination regulations.

Competence Goal
- The students obtain knowledge in the field of geothermics and are able to integrate relevant physical processes into the subject field
- The students are able to apply methods for geothermal subsurface investigations and to make calculations with the obtained data

Content
- Heat budget of the Earth (influence of the sun, humans, stored heat, heat production)
- Heat transport in rocks (phonons, photons, elektrons, advective heat transport)
- Physical understanding of underlying mechanisms and processes
- Introduction into Geothermics, relations and boundaries to other related disciplines
- Energy conservation, thermal and petrophysical properties of rocks, temperature field of the Earth, influence of topography and climate on temperature distribution, Fourier law, stationary/instationary heat conduction, heat transport in continental and oceanic crust, advection by flow (Darcy law), Kelvin problem, Gauss error function
- Introduction into methods and applications in geothermics: Bullard plot interpretation, measurement, Bottom Hole Temperature data
- Introduction into geophysical geodynamics

Annotation
The date for the excursion and the closing date for the excursion report will be promptly announced.
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
Module: Ground Water and Earth Dams (bauIM5S04-GWDAMM) [M-BGU-100073]

Responsible: Dr.-Ing. Andreas Bieberstein
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specific Supplements

Credits 6
Recurrence Each summer term
Duration 1 term
Language German
Level 4
Version 1

Mandatory

| T-BGU-100091 | Ground Water and Earth Dams | 6 CR | Bieberstein |

Competence Certificate
- 'Teilleistung' T-BGU-100091 with oral examination according to § 4 Par. 2 No. 2

details about the learning control see at the 'Teilleistung'

Competence Goal
The students can describe the deepened knowledge about different geotechnical groundwater problems. They can dimension dewatering under very different boundary conditions and demonstrate geohydraulic relationships by example calculations. They are able to develop own solution approaches for dam construction problems, to evaluate construction techniques and to conduct the requested geotechnical proofs.

Module grade calculation
grade of the module is grade of the exam

Prerequisites
none

Content
The module discusses the investigation of the groundwater conditions in laboratory and field. Geohydraulic fundamentals are extended with respect to anisotropy, saturation fronts, air permeability and groundwater drawdown under specific boundary conditions. The construction of flow nets is applied to seepage problems and the underseepage of dams. The hydrologic hydraulic and geotechnical design of dams is deepened. Hereby, the design of artificial sealings and filters is linked to the geomechanical proofs such as sliding, spread and uplift stability, deformation and earthquake design. Buried auxiliary structures, dams designed for overtopping as well as metrological monitoring of dams are mentioned, too.

Recommendation
module 'Earthworks and Foundation Engineering'

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Geotechnical Ground Water Problems lecture/exercise: 30 h
- Embankment Dams (Advanced) lecture/exercise: 30 h
- field trips: 10 h

independent study:

- preparation and follow-up lecture/exercises Geotechnical Ground Water Problems: 25 h
- preparation and follow-up lecture/exercises Embankment Dams (Advanced): 25 h
- examination preparation: 60 h

total: 180 h

Literature
6.27 Module: Hydrogeology: Field and Laboratory Methods [M-BGU-102441]

Responsible: Dr. rer. nat. Nadine Göppert
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>German</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-104834 | Hydrogeology: Field and Laboratory Methods | 5 CR | Göppert |

Competence Certificate

The assessment consists of an examination of another type (graded presentation in seminar) according to §4 (2) of the examination regulations.

Prerequisites

It is mandatory to choose the module "Hydrogeology: Methods and Applications" as a requirement for this module, since it addresses the theoretical and practical background.

Annotation

The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
6.28 Module: Hydrogeology: Groundwater Modelling [M-BGU-102439]

Responsible: Dr. Tanja Liesch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-BGU-104757 Hydrogeology: Groundwater Modelling 5 CR Liesch

Competence Certificate
The assessment consists of an examination of another type (working on a problem, submission ca. mid-February and a ca. 15min poster-presentation) according to §4 (2) of the examination regulations.

Prerequisites
It is mandatory to choose the module "Hydrogeology: Methods and Applications" as a requirement for this module, since it addresses the theoretical and practical background.
Module: Hydrogeology: Karst and Isotopes [M-BGU-102440]

Responsible: Prof. Dr. Nico Goldscheider

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Key Competences in Geosciences (Compulsory Elective Modules)

Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104758</td>
<td>Hydrogeology: Karst and Isotopes</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations.

Module grade calculation
The grade of the module is the grade of the exam.

Prerequisites
none
6.30 Module: Hydrogeology: Karst and Isotopes (with Field Trip) [M-BGU-105150]

Responsible: Prof. Dr. Nico Goldscheider

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Key Competences in Geosciences (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations and a non-assessed coursework (non-assessed excursion report).

Prerequisites

none

Annotation

The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
<th>Course Description</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104758</td>
<td>5</td>
<td>Hydrogeology: Karst and Isotopes</td>
<td>5 CR</td>
<td>Goldscheider</td>
</tr>
<tr>
<td>T-BGU-110413</td>
<td>2</td>
<td>Field Trip Karst Hydrogeology</td>
<td>2 CR</td>
<td>Goldscheider</td>
</tr>
</tbody>
</table>
Module: Hydrogeology: Methods and Applications [M-BGU-102433]

Responsible: Prof. Dr. Nico Goldscheider
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Key Competences in Geosciences (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104750</td>
<td>Hydrogeology: Methods and Applications</td>
<td>7 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written module exam (120 min) according to §4 (2) of the examination regulations.

Prerequisites
none

Annotation
It is mandatory to choose the module "Hydrogeology: Methods and Applications" as a requirement for the modules "M-BGU-102439 – Hydrogeology: Groundwater Modelling" and "M-BGU-102441 - Hydrogeology: Field and Laboratory Methods, since it addresses their theoretical and practical background".
Module: Industrial Minerals and Environment [M-BGU-103993]

6.32 Module: Industrial Minerals and Environment [M-BGU-103993]

Responsible: Prof. Dr. Jochen Kolb

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Key Competences in Geosciences (Compulsory Elective Modules) Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

T-BGU-108191 Industrial Minerals and Environment

5 CR Kolb

Competence Certificate

The assessment consists of an examination of another type (graded module report incl. field trip report) according to §4 (2) of the examination regulations.

Competence Goal

Industrial Minerals

The students know the fundamental characteristics of industrial mineral deposits. They know the different possibilities of industrial application and quality requirements of the respective raw material. They are able to describe samples from industrial mineral deposits, recognize the relevant structure, fabric, texture and mineral assemblage. They can use their observations to make interpretations regarding mineral deposit formation and ore deposit quality. The students know the principle ore deposit models and can use this knowledge in order to interpret their sample set. They are able to decide, which mineral exploration method would be required for exploration of the various deposits and they are able to make basic assumptions about the economy of the deposit. They know how to translate geological observations into key parameters for mineral exploration. They know how to analyze short scientific papers and are able to understand and present the main message. They can relate the message in the paper to own observations in the samples and present a joint interpretation. The students know how to apply their theoretical knowledge in the field. They make interpretations at various scales (thin section, sample, outcrop, deposit, district). They know, how to make meaningful sketches and how to present their observations and interpretation in written and oral formats. They are able to analyze, interpret and discuss their data in conjunction with published ore deposit models and can decide on the style of mineralization and the way of mineral exploration.

Environmental aspects of mining

The students know different environmental risks related to the extraction of metal ores, industrial minerals and energy resources and assign them to the respective stage (exploration, extraction, processing etc.). They are able to derive the potential environmental hazards of individual types of resources and propose suitable reclamation measures based on a sound knowledge of their geochemical and mineralogical characteristics. They can assess the positive and negative effects of extraction, processing and use of different resources on humans and the environment in a differentiated manner and are thus able to critically evaluate their own behaviour in the context of sustainable use of resources.

Prerequisites

none

Content

Industrial Minerals

The combined lectures and practicals start with an introduction into the industrial minerals raw material market and mineral deposit evaluation. The following lessons combine a lecture about the fundamental processes of deposit formation and the relationship to mineral exploration and quality of the industrial mineral resource with practical study of representative samples. In addition, scientific papers will be read and interpreted in some lessons.

During two days of field work the theoretical and practical skills will be applied in the field in selected industrial mineral deposits. Standard methods of geological field work will be applied and directed towards interpretation of the respective deposit.

Environmental aspects of mining

It will be looked at different environmental impacts of ore extraction and processing like acid mine drainage, cyanide leaching, amalgamation or oil spillage with specific focus on the hydrosphere, pedosphere, atmosphere, human beings and society. Furthermore, different strategies on how to minimize environmental impacts will be discussed and different examples on renaturation and reclamation will be presented. Also legal aspects of mineral resources exploration and extraction will be addressed.
Annotation
Students should be aware of harsh conditions during field work and should let the responsible person know, if they would have problems to work underground in old mines.
Depending on the auditorium, the course "Environmental Aspects of Mining" is held in German or English
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.

Workload
60 hours lectures and practicals (including 2 days of field trip) and 90 hours self study/homework

Literature
Bewertungskriterien für Industrieminerale, Steine und Erden. Geologisches Jahrbuch Reihe H. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart. Different publications of various authors; in German with English abstract.
Publications of the Geological Surveys: BGR, DERA, BGS, USGS, etc.
6.33 Module: Internship [M-BGU-103996]

Responsible:	Prof. Dr. Philipp Blum
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Key Competences in Geosciences (Project Study or Internship)

Credits	5
Recurrence	Irregular
Language	German/English
Level	4
Version	2

Mandatory

| T-BGU-108210 | Internship | 5 CR |

Competence Certificate
The assessment consists of:
- submission of an internship certificate from the employer with information about the internship, duration and the field of activity
- an examination of another type (graded internship report ca. 10-20 pages, equivalent to the report of the project study, and ca. 20 min presentation)

according to §4 (2) of the examination regulations.

Prerequisites
None
6.34 Module: Introduction to Ceramics [M-BGU-105222]

Responsible: Prof. Dr. Michael Hoffmann
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100287</td>
<td>Introduction to Ceramics</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral (30 min) taking place at a specific date.
The re-examination is offered at a specific date.

Workload
180 h
6.35 Module: Mineral Exploration [M-BGU-105357]

Responsible: Dr. Clifford Patten
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-110833 | Mineral Exploration | 5 CR | Patten |

Competence Certificate
The students will need to provide a report (~10 pages) on the specific project they have been assigned to. They need to show that they know the right methods of exploration. Deadline for the report is individually scheduled. The first version of the report has to be improved if necessary.

Competence Goal
The students know the different geochemical methods applied to mineral resources exploration. They can choose the best-suited methods at the different stages of exploration for optimizing ore deposits discovery. They also know which exploration methods to use for specific ore deposit types. The students know how to interpret geochemical data and how to correlate them with field and sample observations. They know how to write an exploration report. The students will have the qualifications required for working in the ore mineral industry.

Module grade calculation
Grade of the report is the module grade.

Prerequisites
Students need detailed knowledge on ore forming processes of metallic and non-metallic mineral resources. They also need detailed background in geochemistry and geochemical analytics. Basic knowledge of geophysical exploration methods will be expected.

Content
- Theory for mineral exploration at regional, district, area, target and deposit scale (scientific approach, economics…).
- Geochemical distribution of metals and element of interests in the primary environment (i.e. during magmatism, metamorphism and alteration processes…).
- Geochemical dispersion of metals and element of interests in the secondary environment (i.e. soil, gossans, till, laterites…).
- Greenfield methods for exploration such as stream sediments, soil, rock and water survey.
- Brownfield methods for exploration at deposit scale with specific focus on drill core logging.
- Field sampling and laboratory data acquisition.
- Data interpretation from study cases and from data personally acquired by the students.

Recommendation
The students should have done the course of “Ore Geology of Metals” and “Industrial Minerals and Environment” or have background knowledge in ore geology.

Annotation
The course is held in 3 blocks (1. Block short course, 2. Block short course and project preparation, 3. Block data interpretation). See university calendar / course catalogue.

Workload
40h Lectures, 2-3 field work or sample selection (ca. 25h), ca. 25h laboratory work, 60h self-study (report) = 150 h

Learning type
Lecture, literature research, fieldwork and labwork, report

Literature
Papers presented in lectures
Module: Mineral Materials [M-BGU-102453]

Responsible: Dr. Matthias Schwotzer
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-BGU-104856 Mineral Materials 5 CR Schwotzer

Competence Certificate
The assessment consists of an oral exam (30 min) according to §4 (2) of the examination regulations.

Prerequisites
None

Annotation
The practical part of this course is carried out in presence. The laboratory courses are essential for the progress of the participants.

Responsible: Prof. Dr. Philipp Blum
Organisation: University
Part of: Master Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Each term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-BGU-107516 Master Thesis 30 CR Blum

Competence Certificate
The assessment consists of the Master's Thesis and a presentation. The maximum processing time for the Master's Thesis is six months. The presentation should take place within 8 weeks after the submission of the Master's Thesis.

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to earn at least 70 credits in the following fields:
 - Specific Supplements
 - Key Competences in Geosciences
 - Specialization in Geosciences
6.38 Module: Numerical Methods in Geosciences [M-BGU-102436]

Responsible: Prof. Dr. Thomas Kohl
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Key Competences in Geosciences (Compulsory Modules)

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104816</td>
<td>Numerical Methods in Geosciences</td>
<td>6 CR</td>
<td>Each winter term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations. As a prerequisite for admission to the exam, a homework must be handed in.

Competence Goal
- The students are able to apply a numerical simulation model
- The students obtain knowledges in basic applications of statistical and probability calculations for analysis of geoscientific data and modelling of processes
- The students are able to handle Matlab as programming language

Prerequisites
- none

Content
- Matlab as programming language: introduction, basics, graphics
- Statistical methods and probability calculations of geoscientific data
- Physical mechanisms and processes in geosciences
- Numerical strategies for solution of complex coupled processes (finite differences, finite elements, coupling)
- Introduction into reservoir simulation
- Calculation of a doublet with analytical calibration models

Recommendation
Own laptop/PC

Annotation
Homework required

The practical part of this course is carried out in presence. The exercises are partly conducted in the computing lab and are essential for the progress of the participants.
Module: Ore Geology of Metals [M-BGU-103994]

M 6.39 Module: Ore Geology of Metals [M-BGU-103994]

Responsible: Prof. Dr. Jochen Kolb

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Key Competences in Geosciences (Compulsory Elective Modules)
Specialization in Geosciences

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-109345</td>
<td>Ore Geology of Metals</td>
<td>5 CR</td>
<td>Kolb</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam (30 min) according to §4 (2) of the examination regulations. A report of the field trip and a protocol have to be handed in before the exam.

Competence Goal
The students know the fundamental approach of describing samples from ore deposits (hand specimen, drill core) and thin and polished sections. They can analyze the samples and relate them to the specific ore deposit type. They know the specific textures and are able to discuss them in order to develop a model for the mineralization or hydrothermal alteration processes.

The students know the principle ore deposit models and can use this knowledge in order to interpret their sample set that comes from different parts or zones of an ore deposit. They understand the different scales that are involved in ore deposit formation and are able to use their observations to interpret and discuss the scale-dependent processes involved in mineralization.

The students know the principle methods of mineral exploration and are able to translate geological observations into key parameters for mineral exploration.

The students know how to analyze short scientific papers and are able to understand and present the main message. They can relate the message in the paper to own observations and present a joint interpretation.

The students know how to apply their theoretical knowledge in the field. They make interpretations at various scales (thin section, sample, outcrop, deposit, district). They know, how to make meaningful sketches and how to present their observations and interpretation in written and oral formats. They are able to analyze, interpret and discuss their data in conjunction with published ore deposit models and can decide on the style of mineralization and the way of mineral exploration.

Prerequisites
none

Content
- Detailed processes of ore deposit formation, including modern research advances.
- Ore petrology on sample, drill core, thin section and polished section.
- Reading and interpretation of short papers on ore deposit geology.
- Ormogamatic Ni-PGE-Cu-Au deposits.
- Podiform Chromite deposits.
- Magmatic REE-Nb-Ta deposits.
- Copper Porphyry deposits.
- Epithermal Au-Ag deposits.
- Skarn deposits.
- VMS-SEDEX deposits.
- Orogenic Gold deposits.
- Iron Oxide Copper Gold deposits.
- MVT-SSC deposits.
- Fundamentals of recognizing and describing mineralization in the field.

Recommendation
Students should have a basic level of understanding of ore-forming processes from a previous Economic Geology course.

Annotation
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.

Workload
Approx. 60 hours lectures and practicals (including a 2 day field trip) and 90 hours homework.
Learning type
Lecture / Practicals
(VÜ)

Literature
Books:
M 6.40 Module: Petrology [M-BGU-102452]

Responsible: apl. Prof. Dr. Kirsten Drüppel
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-104854 | Petrology | 5 CR | Drüppel |

Competence Certificate

The assessment consists of an examination of another type (graded homework) according to §4 (2) of the examination regulations.

Prerequisites

none

Annotation

The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
6.41 Module: Physical Chemistry for Applied Geosciences [M-CHEMBIO-104581]

Responsible: wechselnde Dozenten, siehe Vorlesungsverzeichnis
PD Dr. Andreas-Neil Unterreiner

Organisation: KIT Department of Chemistry and Biosciences
Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CHEMBIO-103385</td>
<td>Physical Chemistry</td>
<td>8</td>
</tr>
<tr>
<td>T-CHEMBIO-109395</td>
<td>Laboratory Work in Physical Chemistry</td>
<td>5</td>
</tr>
</tbody>
</table>

Prerequisites

None
Module: Project Study [M-BGU-102438]

Responsible: Prof. Dr. Philipp Blum
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Key Competences in Geosciences (Project Study or Internship)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Irregular</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-104826</td>
<td>Project Study</td>
<td>5 CR</td>
<td>Irregular</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-BGU-107639</td>
<td>Introduction to Project Management</td>
<td>0 CR</td>
<td>Irregular</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an examination of another type (Project Study: graded report and presentation) according to §4 (2) of the examination regulations, as well as a non-assessed coursework (participation in course "Introduction to Project Management" and presentation) according to §4 (3) of the examination regulations.

Prerequisites

none
6.43 Module: Reservoir-Geology [M-BGU-103742]

Responsible: Prof. Dr. Christoph Hilgers

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Key Competences in Geosciences (Compulsory Elective Modules)
Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Title</th>
<th>Code</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir-Geology</td>
<td>T-BGU-107563</td>
<td>5 CR</td>
<td>Hilgers</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations and including the field book.

Competence Goal
After this course students are enabled to interpret fluid migration in porous and fractured rock in 3D sedimentary bodies over time, governing aspects from basin- and structural evolution to facies- and porosity-permeability development. They are enabled to map and characterize sedimentary rocks properties in the field including structural- and petrophysical aspects. They work in teams and critically evaluate own data with published literature.

Prerequisites
none

Content
Basins and reservoirs; methods: petrography, isotopy, microthermometry and cathodoluminescence; burial history and maturation; depositional settings and well correlations; structures; migration and traps; pore pressures, compaction and water saturation; diagenesis; reservoir characterization; reservoir quality prediction; plays and risks. Practical application of reservoir geology in a given field study area with special focus on structure, diagenesis and 3D geometries in sedimentary rocks

Recommendation
The student shall have a basic knowledge of sedimentology and structural geology, such as presented in the module Geologie (Geology), MSc 1st semester

Annotation
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.

Literature
6.44 Module: Rock Mechanics and Tunneling (bauiM5P3-FMTUB) [M-BGU-100069]

Responsible: Dr.-Ing. Peter Kudella
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specific Supplements

Credits: 6
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 2

|Mandatory|
|---|---|---|---|---|
|T-BGU-100069| Rock Mechanics and Tunneling| 5 CR | Mutschler, Wagner |
|T-BGU-100179| Student Research Project 'Rock Mechanics and Tunneling' | 1 CR | Mutschler, Wagner |

Compence Certificate
- 'Teilleistung' T-BGU-100179 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-100069 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Competence Goal
The students understand the essential strength and deformation properties of rock and master the basic analytical methods to solve boundary value problems of surface and underground rock excavation. They can select basic construction methods and constructions in underground tunnel construction and apply self-reliantly the methods of rock mechanics and static calculation and safety assessments. With regard to the assessment of variants, costs, construction operation and safety aspects they gained geotechnical competence in solving problems for all kind of constructions in and with solid rocks.

Module grade calculation
grade of the module is grade of the exam

Prerequisites
none

Content
see German version

Recommendation
basic knowledge of Engineering Geology;
compilation and submission of student research project as examination preparation until examination date

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Basics in Rock Mechanics lecture/exercise: 30 h
- Basics in Tunnel Construction lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises Basics in Rock Mechanics: 20 h
- preparation and follow-up lecture/exercises Basics in Tunnel Construction: 20 h
- preparation of student research project: 20 h
- examination preparation: 60 h

total: 180 h
Literature
[8] Müller, L. 1978: Der Felsbau, Bd. 3 Tunnelbau
6.45 Module: Sedimentary Petrology [M-BGU-103733]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>German/English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Armin Zeh
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Key Competences in Geosciences (Compulsory Elective Modules)
Specialization in Geosciences

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107558 Sedimentary Petrology</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations.

Module grade calculation
Grade of the module is grade of the exam

Prerequisites
none

Annotation
Depending on the auditorium, this module is held in German or English

Workload
Contact hours: 60h (lecture and exercises)
Self study time: 90h incl. exam
6.46 Module: Structural and Phase Analysis [M-BGU-105236]

Responsible: Dr.-Ing. Susanne Wagner
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102170</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam (20-30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation).
The re-examination is offered upon agreement.

Competence Goal
The students know the fundamentals of crystallography, the generation and detection of x-rays as well as their interaction with the microstructure of crystalline materials. They have detailed knowledge about the different methods of x-ray diffraction measurements and are able to analyse x-ray spectra using modern methods of x-ray analysis both qualitatively and quantitatively.

Module grade calculation
The grade of the module is the grade of the oral examination.

Content
The course gives an overview to generation and detection of x-rays as well as their interaction with matter. It provides an introduction to crystallography and describes modern measurement and analysis methods of x-ray diffraction.

It is arranged in the following units:

- Generation and properties of X-Ray's
- Crystallography
- Fundamentals and application of different measuring methods
- Qualitative and quantitative phase analysis
- Texture analysis (pole figures)
- Residual stress measurements

Workload
regular attendance: 30 hours
self-study: 90 hours

Literature
Moderne Röntgenbeugung - Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker, Spieß, Lothar / Schwarzer, Robert / Behnken, Herfried / Teichert, Gerd B.G. Teubner Verlag 2005
Module: Structural Ceramics [M-BGU-105223]

Responsible: Prof. Dr. Michael Hoffmann
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Each summer term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-102179 | Structural Ceramics | 4 CR | Hoffmann |

Competence Certificate
Oral examination, 20-30 min

Literature
6.48 Module: Structural Geology [M-BGU-102451]

Responsible: apl. Prof. Dr. Agnes Kontrny
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specialization in Geosciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>CR</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107507</td>
<td>Microstructures</td>
<td>3</td>
<td>Kontrny</td>
</tr>
<tr>
<td>T-BGU-107508</td>
<td>Field Course Applied Structural Geology</td>
<td>2</td>
<td>Kontrny</td>
</tr>
</tbody>
</table>

Competence Goal

- Students will be trained in microstructural analysis in order to gain fundamental understanding of rock deformation. They learn to evaluate their own observation in relation to a tectonic context.
- Practical application of structural analysis in a given field study area.

Prerequisites

none

Content

- Microstructures: The students learn to describe and evaluate small scale structures in deformed rocks. They are enabled to describe and interpret rock fabric elements, foliation development, polyphase deformation, deformation mechanisms, porphyroblast growth-deformation relationship and shear zone fabrics.
- Field course Applied Structural Geology: The students learn to describe and interpret large scale structures in the field. They characterize the development of normal faults, folds, thrust systems, unconformities and explain polyphase deformation in space and time in different orogenic belts.

Annotation

The practical part of this course is carried out in presence. The field courses and microscopy courses are essential for the progress of the participants.

Literature

Further references to the field course will be delivered in advance
6.49 Module: Thermal Use of Groundwater [M-BGU-103408]

Responsible: Prof. Dr. Philipp Blum

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Specific Supplements

Credits: 4
Recurrence: Each winter term
Language: English
Level: 4
Version: 2

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106803</td>
<td>Thermal Use of Groundwater</td>
<td>4</td>
<td>Blum</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam (approx. 15 min), according to § 4 Par. 2 No. 2.

Competence Goal
Students get familiar with the topic 'Thermal Use of Groundwater' and will be able to integrate their knowledge in particular in an urban water energy nexus. They get knowledge about the fundamentals of thermal transport in groundwater and their application to shallow geothermal systems such as ground source and groundwater heat pump systems. Hence, analytical and numerical simulations will be performed using Excel and Matlab scripted codes. They will be able to perform their own simulations and will be able to design shallow geothermal systems in context of the water energy nexus.

Module grade calculation
The grade of the module is the grade of the oral exam.

Content
The content of this module is mainly based on the textbook on 'Thermal Use of Shallow Groundwater' and is therefore structured as follows:
- Fundamentals (theory of heat transport in the subsurface)
- Analytical solutions for closed and open systems
- Numerical solutions for shallow geothermal systems
- Long-term operability and sustainability
- Field methods such as thermal tracer tests and thermal response tests (TRT)
- Case studies and applications

Analytical simulations are performed using Excel and Matlab scripted codes. In addition, calibration and validation exercises are performed using existing field and monitoring data. Finally, the students are actively planning an own geothermal system from the application up to the long-term performance of such a system. Hence, a final planning report should be written.

Recommendation
knowledge of programming with Matlab; otherwise, it is strongly recommended to attend the course 'Introduction to Matlab' (6224907)

Workload
Regular Attendance, active participation in lectures: 30 hours
Preparation and follow-up of lectures (at home): 40 hours
Self-study, preparation for the exam plus oral exam: 50 hours
Total of 120 hours

Literature
Other documents such as recent publications are made available on ILIAS
6.50 Module: Urban Ecology (E13) [M-BGU-101568]

Responsible: apl. Prof. Dr. Stefan Norra
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103001</td>
<td>Urban Ecology</td>
<td>3 CR</td>
<td>Norra</td>
</tr>
<tr>
<td>T-BGU-106684</td>
<td>Urban Ecology Lecture</td>
<td>3 CR</td>
<td>Norra</td>
</tr>
<tr>
<td>T-BGU-106685</td>
<td>Urban Ecology Practical Course</td>
<td>6 CR</td>
<td>Norra</td>
</tr>
</tbody>
</table>

Prerequisites
None

Annotation
None
6.51 Module: Water and Energy Cycles (bauIM2P8-WATENCYC) [M-BGU-103360]

Responsible: Prof. Dr.-Ing. Erwin Zehe

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each winter term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106596</td>
<td>Water and Energy Cycles</td>
<td>6 CR Zehe</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-106596 with examination of other type according to § 4 Par. 2 No. 3

Competence Goal
Students are able to explain the most relevant processes of Hydrology including their feedbacks and limitations. They know the concepts to describe and predict these processes in the context of science and water management. Furthermore, they are able to independently apply related computer-based tools for analysis and prediction for standard situations. Students are able to evaluate the required data and to quantify and evaluate the uncertainties related to the simulations and predictions.

Module grade calculation
grade of the module is grade of the exam

Prerequisites
none

Content
This module deepens the fundamentals of the water and energy cycles with particular regard to:

- the soil as the central control element of the water and energy cycle and the interplay of soil water and ground heat balance
- evaporation, energy balance and processes in the atmospheric boundary layer
- runoff and evaporation regimes in different hydro-climates;
- water balance and floods at the catchment scale and statistics for water management
- the interplay between runoff processes and soil water balance, and the soil as filter system
- concepts of hydrological similarity and comparative hydrology
- process-based and conceptual models to simulate water balances and predict flood

Recommendation
course Hydrology (6200511) and module Water Resources Management and Engineering [bauIBFW9-WASSRM]; knowledge of programming with Matlab or another similar programming language, otherwise the attendance of the course 'Introduction to Matlab' (6224907) is strongly recommended

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 60 h

independent study:
- preparation and follow-up lecture/exercises: 40 h
- preparation of term paper (examination): 80 h

total: 180 h
Literature
Competence Goal

- Students get familiar with processes in aquatic systems. These include the determination, occurrence and behavior of geogenic and anthropogenic compounds as well as microorganisms in the different parts of the hydrological cycle.
- Apart from the questions on the chemical and biological water quality, the focus also lies on technical aspects of water use, water treatment and water technology.

Prerequisites

None

Content

Chemische und physikalische Eigenschaften des Wassers, Wasserkreislauf und Inhaltsstoffe, Kalk-Kohlensäure-Gleichgewicht, Sättigungsindex, Grundwasser, Oberflächenwasser, Umsetzungen, Trinkwasser, Grundlagen der Wasserbeurteilung, analytische Verfahren zur Wasseruntersuchung, wassertechnologische und wasserchemische Verfahren (Flockung, Fällung, Enteisenung, Entmanganung, Adsorption und Ionenaustausch, Gas austausch, Enthärtung und/oder Entkarbonisierung, Oxidation und Entkeimung), Übungen

Recommendation

None

Literature

- Crittenden et al. (2005): Water Treatment, Principles and design. Wiley & Sons
- Vorlesungsskripte
Module: Water Technology [M-CIWVT-103407]

Responsible: Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each winter term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106802</td>
<td>Water Technology</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam, 30 min

Competence Goal

Students learn fundamental knowledge in water chemistry and how to apply it to processes in aquatic systems in general and in reactors for water treatment. Water treatment will be taught for drinking water and partly waste water. The students are able to apply physical, chemical and biochemical treatment for the respective removal of particulate and dissolved components in water. They are able to use the fundamental design parameters for the different types of unit operations.

Prerequisites

None

Content

Water cycle, different types of raw water (ground and surface water). Water as solvent, carbonate balance, differentiation between microbiological and chemical population. Unit operations: sieving, sedimentation, filtration, flocculation, flotation, ion exchange, aeration, oxidation, disinfection, adsorption). For all unit operations design parameters will be provided. Simple 1D models will be discussed for description of kinetics and retention time in reactors for water treatment.

Workload

- Attendance time: 45 h
- Preparation/follow-up: 60 h
- Examination + exam preparation: 75 h

Literature

Lecture notes will be provided in ILIAS
7 Courses

7.1 Course: Advanced Analysis in GIS [T-BGU-101782]

Responsible: Dr.-Ing. Norbert Rösch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-101053 - Advanced Analysis in GIS

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>6026208</th>
<th>Advanced Analyses in GIS</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Rösch</th>
</tr>
</thead>
</table>

Competence Certificate

oral exam with 20 minutes

Prerequisites

Keine

Recommendation

None

Annotation

Keine
7.2 Course: Advanced Clay Mineralogy [T-BGU-104840]

Responsible: Dr. Katja Emmerich
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102444 - Applied Mineralogy: Clay Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6310430</td>
<td>Anwendungen von Tonen und Laboreinführung</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td>Lecture / Practice (VÜ)</td>
</tr>
<tr>
<td></td>
<td>Emmerich</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
none

Annotation
The practical part of this course is carried out in presence. It requires special rooms (laboratory) and is essential for the study progress of the participants.
7.3 Course: Applied Geothermics [T-BGU-108017]

Responsible: Prof. Dr. Thomas Kohl
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102447 - Applied Geothermics

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>6310425</th>
<th>Geothermische Nutzung</th>
<th>2 SWS</th>
<th>Lecture / Practice (VÜ)</th>
<th>Kohl</th>
</tr>
</thead>
</table>

Prerequisites
none
7.4 Course: Applied Geothermics - Excursion [T-BGU-108018]

Responsible: Prof. Dr. Thomas Kohl
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102447 - Applied Geothermics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>1</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Workload</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6310427</td>
<td>Exkursion zu Geothermische Nutzung (2 Tage)</td>
<td>1 SWS, Practice (Ü)</td>
<td>Kohl</td>
</tr>
</tbody>
</table>

Prerequisites
none

Annotation
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
7.5 Course: Applied Mineralogy: Geomaterials [T-BGU-104811]

Responsible: Dr. Rosa Micaela Danisi
Dr. Gemma de la Flor Martin
Prof. Dr. Frank Schilling

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-102430 - Applied Mineralogy: Geomaterials

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Written examination</td>
<td>5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Type
Written examination

Credits
5

Recurrence
Each winter term

Version
2

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Lecture / Practice</td>
<td>2 SWS</td>
<td>de la Flor Martin,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schilling</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (90 min) according to §4 (2) of the examination regulations.
To pass the exam, at least 50% of the points must be achieved.

Prerequisites

none

Annotation

Will be held in Englisch to improve language competence.

The practical part of this course is carried out in presence. It requires special rooms (laboratory) and is essential for the course progress of the participants.
7.6 Course: Borehole Technology [T-BGU-104851]

Responsible: Prof. Dr. Thomas Kohl
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102449 - Borehole Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6310426</td>
<td>Drilling</td>
<td>2 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Müller, Kohl</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6339095</td>
<td>Borehole-Technology I (Logging) / Logging</td>
<td>2 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Kohl</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Prerequisites
none
7.7 Course: Brownfield Sites - Investigation, Evaluation, Rehabilitation [T-BGU-100089]

Responsible: Dr.-Ing. Andreas Bieberstein
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100079 - Environmental Geotechnics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2 SWS</td>
<td>Lecture (V) / Online</td>
<td>Bieberstein, Eiche, Würdemann, Mohrlok</td>
<td></td>
</tr>
<tr>
<td>6251915</td>
<td></td>
<td>6251915</td>
<td>Brownfield Sites - Investigation, Evaluation, Rehabilitation</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
7.8 Course: Clay Mineralogy Introduction [T-BGU-104839]

Responsible: Dr. Katja Emmerich
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102444 - Applied Mineralogy: Clay Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339084</td>
<td>Tonmineralogie Einführung</td>
<td>2</td>
<td>Lecture / Practice (VÜ)</td>
<td>Emmerich</td>
</tr>
</tbody>
</table>

Prerequisites

none

Annotation
The practical part of this course is carried out in presence. It requires special rooms (laboratory) and is essential for the study progress of the participants.
7.9 Course: Current Research Topics in Hydrogeology and Engineering Geology

Responsible: Prof. Dr. Nico Goldscheider
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105506 - Current Research Topics in Hydrogeology and Engineering Geology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Dozenten der Hydrogeologie und Ingenieurgeologie, Eingeladene Gäste</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Fachgespräch Hydrogeologie und Ingenieurgeologie</td>
<td>1 SWS</td>
<td>Lecture (V) / 🖥</td>
<td>Dozenten der Hydrogeologie und Ingenieurgeologie, Eingeladene Gäste</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Oberseminar Hydrogeologie/ Ingenieurgeologie</td>
<td>1,5 SWS</td>
<td>Advanced Graduate Seminar (OS)</td>
<td>Xanke</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Attendance at current lecture series, excursion report(s) (1 page/day), presentation (20 min)

Prerequisites
Choice of the profile Hydrogeology and Engineering Geology
7.10 Course: Diagenesis [T-BGU-107559]

Responsible: Prof. Dr. Christoph Hilgers

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103734 - Diagenesis and Cores

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Blocks</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6339070</td>
<td>Diagenesis</td>
<td>2 SWS</td>
<td>Seminar (S) / On-Site</td>
</tr>
</tbody>
</table>

Felder, Busch

Prerequisites

Reservoir-Geology

Annotation

Diagenesis: Seminar as block course during winter term due to requirement of microscope lab and involvement of external lecturer

The practical part of this course is carried out in presence. The microscopy exercises are essential for the study progress of the participants.
7.11 Course: Earthworks and Foundation Engineering [T-BGU-100068]

Responsible: Dr.-Ing. Andreas Bieberstein
Dr.-Ing. Peter Kudella

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100068 - Earthworks and Foundation Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6251701</td>
<td>Foundation Types</td>
<td>2</td>
<td>Lecture / Practice</td>
<td>Knittel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(VÜ)</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6251703</td>
<td>Basics in Earthworks and Embankment Dams</td>
<td>2</td>
<td>Lecture / Practice</td>
<td>Bieberstein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(VÜ)</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🏛 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
preparation of the student research project for examination preparation

Annotation
none
7.12 Course: Electron Microscopy I [T-PHYS-107599]

Responsible: Jun.-Prof. Dr. Yolita Eggeler
Prof. Dr. Dagmar Gerthsen

Organisation: KIT Department of Physics
Part of: M-PHYS-103760 - Electron Microscopy I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Event Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>4027011</td>
<td>Electron Microscopy I</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Gerthsen, Eggeler</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>4027012</td>
<td>Exercises to Electron Microscopy I</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Gerthsen, Eggeler</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Oral Exam, ca. 45 min

Prerequisites

none
7.13 Course: Electron Microscopy II [T-PHYS-107600]

Responsible: Prof. Dr. Dagmar Gerthsen
Organisation: KIT Department of Physics
Part of: M-PHYS-103761 - Electron Microscopy II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 4027021</td>
<td>2 SWS</td>
<td>Elektronenmikroskopie II</td>
<td>Lecture (V)</td>
<td>Gerthsen</td>
</tr>
<tr>
<td>SS 2020 4027022</td>
<td>2 SWS</td>
<td>Übungen zu Elektronenmikroskopie II</td>
<td>Practice (Ü)</td>
<td>Gerthsen</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam, ca. 45 min

Prerequisites
none
Course: Engineering Geologie: Laboratory and Field Methods [T-BGU-104814]

Responsible: Prof. Dr. Philipp Blum

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-102434 - Engineering Geology: Laboratory and Field Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>7</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>6310404</th>
<th>Ingenieurgeologisches Geländepraktikum/ Engineering Geological</th>
<th>3 SWS</th>
<th>Practice (Ü)</th>
<th>Blum, Menberg, Schweizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339112</td>
<td>Ingenieurgeologisches Laborpraktikum</td>
<td>2 SWS</td>
<td>Practice (Ü) / On-Site</td>
<td>Menberg, Blum, Rau, Schweizer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), 🔊 On-Site, ❌ Cancelled

Prerequisites
none

Annotation
The practical part of this course is carried out in presence. The field courses and laboratory courses are essential for the progress of the participants.
7.15 Course: Engineering Geology: Mass Movements [T-BGU-110724]

Responsible: Dr. Kathrin Menberg
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102442 - Engineering Geology: Mass Movements and Modelling

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339082</td>
<td>Massenbewegungen</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled
7.16 Course: Engineering Geology: Modelling [T-BGU-110725]

Responsible: Dr. Kathrin Menberg
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102442 - Engineering Geology: Mass Movements and Modelling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type of Lecture / Practice</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6310413</td>
<td>Numerische Modellierung in der Ingenieurgeologie</td>
<td>2</td>
<td>Lecture / Practice (VÜ)</td>
<td>Blum, Menberg, Chaparro Sánchez</td>
</tr>
</tbody>
</table>
7.17 Course: Environmental Geology: Radio- & Chemotoxic Elements [T-BGU-107560]

Responsible: Dr. Frank Heberling
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102455 - Environmental Geology: Radio- & Chemotoxic Elements

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339088</td>
<td>Geowissenschaftliche Aspekte der Entsorgung radio- und chemotoxischer Abfälle</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Prerequisites
none
7.18 Course: Environmental Mineralogy [T-BGU-109325]

Responsible: apl. Prof. Dr. Stefan Norra
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-104466 - Environmental Mineralogy

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6339201</td>
<td>Übungen zur Umweltmineralogie</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Norra, Rühr</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6339198</td>
<td>Umweltmineralogie</td>
<td>2</td>
<td>Lecture (V) / 🖥️</td>
<td>Norra, Rühr</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🍀 Blended (On-Site/Online), 🇤 On-Site, ✗ Cancelled

Annotation
The practical part of this course is carried out in presence. The field courses and laboratory courses are essential for the progress of the participants.
7.19 Course: Field Course Applied Structural Geology [T-BGU-107508]

Responsible: apl. Prof. Dr. Agnes Kontrn

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-102451 - Structural Geology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type of Study</th>
<th>Practice (Ü)</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6310406</td>
<td>Geländeübung zur Angewandten Strukturgeologie</td>
<td>3 SWS</td>
<td>Kontrn</td>
</tr>
</tbody>
</table>

Prerequisites

none

Annotation

The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
7.20 Course: Field Excercise / Excursion [T-BGU-104878]

Responsible: Prof. Dr. Armin Zeh
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102456 - Field Excercises / Excursion

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

| Events | SS 2020 | 6310460 | Geowissenschaftliche Geländeübung/ Exkursion | 5 SWS | Practice (Ü) | Zeh |

Prerequisites
none

Annotation
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
7.21 Course: Field Trip General Geothermics [T-BGU-107635]

Responsible: Prof. Dr. Thomas Kohl
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102432 - Geothermics: Energy and Transport Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339092</td>
<td>General Geothermics Field Exercises</td>
<td>SWS</td>
<td>Excursion (EXK) / Kohl</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Annotation

The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
7.22 Course: Field Trip Karst Hydrogeology [T-BGU-110413]

Responsible: Prof. Dr. Nico Goldscheider

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-105150 - Hydrogeology: Karst and Isotopes (with Field Trip)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6339078</td>
<td>Exkursion zur Karsthydrogeologie/Field Trip Karst Hydrogeology</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Goldscheider</td>
</tr>
</tbody>
</table>

Annotation
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
7.23 Course: Geochemical Processes and Analytical Methods [T-BGU-108192]

Responsible: Dr. Elisabeth Eiche
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103995 - Geochemical Processes and Analytical Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6310405</td>
<td>Geochemical element cycling</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Eiche, Patten, Kluge, Walter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>6310410</td>
<td>Analytical geochemistry (advanced level)</td>
<td>2</td>
<td>Practical course (P)</td>
<td>Eiche, Kolb, Patten, Walter, Kluge</td>
</tr>
</tbody>
</table>

Annotation
The practical part of this course is carried out in presence. It requires special rooms (laboratory) and is essential for the study progress of the participants.
7.24 Course: Geological Mapping and Processing of Geospatial Data [T-BGU-104819]

Responsible: apl. Prof. Dr. Kirsten Drüppel
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102437 - Geological Mapping and Processing of Geospatial Data

<table>
<thead>
<tr>
<th>Events</th>
<th>Course ID</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6310399</td>
<td>Digitale Geoinformationsverarbeitung/ Processing of Geospatial Data</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>8</td>
<td>Each summer term</td>
<td>1</td>
<td>Menberg</td>
</tr>
<tr>
<td>SS 2020</td>
<td>6310401</td>
<td>Geologische Kartierübung für Fortgeschrittene/ Advanced Geological Mapping (field course)</td>
<td>4 SWS</td>
<td>Practice (Ü)</td>
<td></td>
<td></td>
<td></td>
<td>Grimmer, Drüppel</td>
</tr>
</tbody>
</table>

Prerequisites
none

Annotation
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
7.25 Course: Geological Storage of Gas [T-BGU-104841]

Responsible: Prof. Dr. Frank Schilling
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102445 - Geological Storage of Gas

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Grundlagen der Gasspeicherung/Geological Storage of Gas</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Schilling</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Grundlagen der Reservoirgeomechanik</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Schilling, Müller</td>
</tr>
</tbody>
</table>
7.26 Course: Geology [T-BGU-104812]

Responsible: Prof. Dr. Christoph Hilgers

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-102431 - Geology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339080</td>
<td>Analysis of Geological Structures</td>
<td>3</td>
<td>Lecture / Practice (VÜ) / 🎧</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hilgers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6339086</td>
<td>Depositional Systems</td>
<td>1</td>
<td>Lecture (V) / 🎧</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hilgers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🎧 Blended (On-Site/Online), ⌁ On-Site, ✗ Cancelled

Prerequisites

none
7 COURSES

7.27 Course: Geospatial Data Analysis I – Programming and Geostatistics [T-BGU-111066]

Responsibility: Dr. Kathrin Menberg
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105505 - Geospatial Data Analysis I – Programming and Geostatistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339052</td>
<td>Programmierung und Geostatistik für Hydro- und Ingenieurgeologen</td>
<td>Lecture / Practice (VÜ) / 🖥</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🟩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Student research project: programming of a code for data analysis, written documentation (ca. 5 pages)

Prerequisites
Choice of the profile Hydrogeology and Engineering Geology

Recommendation
This module should be attended and completed before the module Geodata Analysis II (starting summer term 2021) that builds on it.
7.28 Course: Geotechnical Engineering [T-BGU-107465]

Responsible: Dr.-Ing. Peter Kudella
apl. Prof. Dr. Andrzej Niemunis

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103698 - Geotechnical Engineering

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Type</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6200415</td>
<td>Basics in Soil Mechanics</td>
<td>2 SWS</td>
<td>Written examination</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>SS 2020</td>
<td>6200416</td>
<td>Exercises to Basics in Soil Mechanics</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Niemunis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>6200417</td>
<td>Tutorials to Basics in Soil Mechanics</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Niemunis, Kimmig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6200515</td>
<td>Basics in Foundation Engineering</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6200516</td>
<td>Exercises to Basics of Foundation Engineering</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6200517</td>
<td>Tutorial to Basics in Foundation Engineering</td>
<td>2 SWS</td>
<td>Tutorial (Tu)</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: ![Online](image), ![Blended](image), ![On-Site](image), ![Cancelled](image)

Competence Certificate

written exam, 150 min.

Prerequisites

none

Recommendation

The preparation of voluntary term papers is strongly recommended as preparation for the examination.

Annotation

none
Course: Geothermal Reservoir Engineering - Seminar [T-BGU-110428]

Responsible: Dr. Emmanuel Gaucher
PD Dr. Jens Carsten Grimmer
Prof. Dr. Thomas Kohl

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105136 - Geothermal Reservoir Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type (S) / 🧩</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339118</td>
<td>Geothermal Reservoir Engineering - Seminar</td>
<td>1 SWS</td>
<td>🧩</td>
<td>Kohl, Gaucher, Grimmer, Gholamikorzani, Held</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🧩 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of an oral presentation

Prerequisites
none
7.30 Course: Geothermal Reservoir Engineering - Topics [T-BGU-110427]

Responsible:
Dr. Emmanuel Gaucher
PD Dr. Jens Carsten Grimmer
Prof. Dr. Thomas Kohl

Organisation:
KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105136 - Geothermal Reservoir Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Geothermal Reservoir Engineering - Topics</th>
<th>SWS</th>
<th>Type</th>
<th>Lecture (V) / 🛬</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339117</td>
<td></td>
<td>3</td>
<td>SWS</td>
<td>Kohl, Gaucher, Grimmer, Gholamikorzani, Held</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🛬 Online, 🛬 Blended (On-Site/Online), 📡 On-Site, ⌚ Cancelled

Competence Certificate

The assessment consists of a written exam (90 minutes) (following §4(2), of the examination regulation).

Prerequisites

none
7.31 Course: Geothermics: Energy and Transport Processes [T-BGU-104813]

Responsible: Prof. Dr. Thomas Kohl
Prof. Dr. Frank Schilling

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-102432 - Geothermics: Energy and Transport Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339090</td>
<td>Energy Budget of the Earth</td>
<td>1</td>
<td>Lecture (V) / Online</td>
<td>Schilling</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6339091</td>
<td>General Geothermics</td>
<td>2</td>
<td>Lecture (V) / Blended (On-Site/Online)</td>
<td>Kohl</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ☇ On-Site, ✗ Cancelled

Prerequisites

none
7.32 Course: Ground Water and Earth Dams [T-BGU-100091]

Responsible: Dr.-Ing. Andreas Bieberstein
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100073 - Ground Water and Earth Dams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 6251814 Geotechnical Ground Water Problems</td>
<td>2 SWS</td>
<td>Lecture / Practice (VU)</td>
<td>Bieberstein</td>
</tr>
<tr>
<td>SS 2020 6251816 Embankment Dams (Advanced)</td>
<td>2 SWS</td>
<td>Lecture / Practice (VU)</td>
<td>Bieberstein</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 40 min.

Prerequisites
none

Recommendation
none

Annotation
none
7.33 Course: Hydrogeology: Field and Laboratory Methods [T-BGU-104834]

Responsible: Dr. rer. nat. Nadine Göppert
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102441 - Hydrogeology: Field and Laboratory Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Event Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6310412</td>
<td>Gelände- und Laborübung/ Field and Laboratory Exercises</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Göppert</td>
</tr>
<tr>
<td>SS 2020</td>
<td>6310414</td>
<td>Vorbereitendes Seminar/ Preparatory Workshop</td>
<td>1</td>
<td>Seminar (S)</td>
<td>Göppert</td>
</tr>
</tbody>
</table>

Prerequisites

none

Annotation

It is mandatory to choose the module "Hydrogeology: Methods and Applications" as a requirement for this module, since it addresses the theoretical and practical background.

The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
Course: Hydrogeology: Groundwater Modelling [T-BGU-104757]

Responsible: Dr. Tanja Liesch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102439 - Hydrogeology: Groundwater Modelling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339113</td>
<td>Groundwater Modeling</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Liesch, Schäfer</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6339114</td>
<td>Practice Groundwater Modeling</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Liesch, Schäfer</td>
</tr>
</tbody>
</table>

Prerequisites

It is mandatory to choose the module "Hydrogeology: Methods and Applications" as a requirement for this module, since it addresses the theoretical and practical background.
7.35 Course: Hydrogeology: Karst and Isotopes [T-BGU-104758]

Responsible: Prof. Dr. Nico Goldscheider
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102440 - Hydrogeology: Karst and Isotopes
M-BGU-105150 - Hydrogeology: Karst and Isotopes (with Field Trip)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6310411</td>
<td>Isotopenmethoden in der Hydrogeologie / Isotope Methods in Hydrogeology</td>
<td>1 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>5</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6339076</td>
<td>Karsthydrogeologie</td>
<td>2 SWS</td>
<td>Lecture / Practice (VÜ) / 🥤</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🥤 Blended (On-Site/Online), 🗽 On-Site, ✗ Cancelled

Competence Certificate

Written Exam, 90 min.

Recommendation

Module "Hydrogeology: Methods and Applications" passed successfully
7.36 Course: Hydrogeology: Methods and Applications [T-BGU-104750]

Responsible: Prof. Dr. Nico Goldscheider

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-102433 - Hydrogeology: Methods and Applications

Type

- **Written examination**

Credits

- **7**

Recurrence

- **Each term**

Version

- **1**

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6339081</td>
<td>Hydraulische Methoden/ Hydraulic Methods</td>
<td>1.5</td>
<td>Lecture / Practice (VÜ)</td>
<td>Liesch</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6339081</td>
<td>Angewandte Hydrogeologie</td>
<td>2</td>
<td>Lecture / Practice (VÜ) / 🖥</td>
<td>Goldscheider, Göppert</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6339087</td>
<td>Regionale Hydrogeologie</td>
<td>1.5</td>
<td>Lecture (V) / 🖥</td>
<td>Goldscheider, Göppert</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), 🗝 On-Site, ✗ Cancelled

Prerequisites

- none
7.37 Course: Industrial Minerals and Environment [T-BGU-108191]

Responsible: Prof. Dr. Jochen Kolb

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103993 - Industrial Minerals and Environment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6310124</td>
<td>Industrial Minerals</td>
<td>2</td>
<td>Lecture / Practice (VÜ) / 🗣</td>
<td>Kolb, Patten, Walter</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6339098</td>
<td>Umweltaspekte der Rohstoffgewinnung</td>
<td>1</td>
<td>Lecture (V) / 🕊️</td>
<td>Eiche</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕊️ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

keine

Annotation

The course "Industrial Minerals in the Field" is part of this module, duration: 2 days. The date will be announced during the winter term.

The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
7.38 Course: Internship [T-BGU-108210]

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103996 - Internship

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Irregular</td>
<td>2</td>
</tr>
</tbody>
</table>
Course: Introduction to Ceramics [T-MACH-100287]

Responsible: Prof. Dr. Michael Hoffmann
Organisation: KIT Department of Mechanical Engineering
Part of: M-BGU-105222 - Introduction to Ceramics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Terms</th>
<th>ID</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2125757</td>
<td>Introduction to Ceramics</td>
<td>3</td>
<td>SWS</td>
<td>Hoffmann</td>
</tr>
</tbody>
</table>

Legend: ☑ Online, ☐ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of an oral exam (30 min) taking place at a specific date.
The re-examination is offered at a specific date.

Prerequisites
None
7.40 Course: Introduction to Project Management [T-BGU-107639]

Responsible: Prof. Dr. Christoph Hilgers
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102438 - Project Study

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture (V)</th>
<th>Hilgers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6339083</td>
<td>Grundlagen des Projektmanagements</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>
7.41 Course: Laboratory Work in Physical Chemistry [T-CHEMBIO-109395]

Organisation: KIT Department of Chemistry and Biosciences

Part of: M-CHEMBIO-104581 - Physical Chemistry for Applied Geosciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>5</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Lecture Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Type</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>5229</td>
<td>Physikalisch-chemisches Praktikum für Angewandte Geowissenschaften</td>
<td>8 SWS</td>
<td>Practical course (P)</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>5229</td>
<td>Physikalisch-chemisches Praktikum für Angewandte Geowissenschaften</td>
<td>8 SWS</td>
<td>Practical course (P) / Online</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
acc. to lecturer
7.42 Course: Landfills [T-BGU-100084]

Responsible: Dr.-Ing. Andreas Bieberstein
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100079 - Environmental Geotechnics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>6251913</th>
<th>Landfills</th>
<th>2 SWS</th>
<th>Lecture / Practice (VÜ) / 🧩</th>
<th>Bieberstein</th>
</tr>
</thead>
</table>

Legends: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
7.43 Course: Master Thesis [T-BGU-107516]

Responsible: Prof. Dr. Philipp Blum

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103726 - Module Master Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>30</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Final Thesis

This course represents a final thesis. The following periods have been supplied:

- **Submission deadline**: 6 months
- **Maximum extension period**: 3 months
- **Correction period**: 8 weeks
7 COURSES
Course: Microstructures [T-BGU-107507]

7.44 Course: Microstructures [T-BGU-107507]

Responsibilities: apl. Prof. Dr. Agnes Kontry
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102451 - Structural Geology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6339085</td>
<td>Mikrogefüge von Gesteinen / Microstructures</td>
<td>2</td>
<td>Lecture / Practice</td>
<td>Kontry</td>
<td>-</td>
</tr>
</tbody>
</table>

Prerequisites

none

Annotation

The practical part of this course is carried out in presence. The microscopy courses are essential for the progress of the participants.
7.45 Course: Mineral and Rock Physics [T-BGU-104838]

Responsible: Prof. Dr. Frank Schilling
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102443 - Applied Mineralogy: Petrophysics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 6310428 Petrophysik II</td>
<td>3 + 1 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Schilling</td>
</tr>
</tbody>
</table>

Prerequisites
none

Annotation
The practical part of this course is carried out in presence. It requires special rooms (laboratory) and is essential for the study progress of the participants.
7.46 Course: Mineral Exploration [T-BGU-110833]

Responsible: Dr. Clifford Patten

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-105357 - Mineral Exploration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6321410</td>
<td>Mineral Exploration</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Patten</td>
</tr>
</tbody>
</table>

Competence Certificate

Report (after preliminary review), see module description

Prerequisites

see module description

Recommendation

see module description

Annotation

see module description
7.47 Course: Mineral Materials [T-BGU-104856]

Responsible: Dr. Matthias Schwotzer
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102453 - Mineral Materials

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Lecture</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>V</td>
<td>2 SWS</td>
<td></td>
<td>Schwotzer</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>V/🖥</td>
<td>2 SWS</td>
<td></td>
<td>Schwotzer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), 📣 On-Site, ✗ Cancelled

Prerequisites
none

Annotation
The practical part of this course is carried out in presence. The laboratory courses are essential for the progress of the participants.
7.48 Course: Numerical Methods in Geosciences [T-BGU-104816]

Responsible: Prof. Dr. Thomas Kohl
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102436 - Numerical Methods in Geosciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>6339078</th>
<th>Numerical Methods in Geosciences</th>
<th>4 SWS</th>
<th>Lecture / Practice (VÜ) / 🧩</th>
<th>Kohl, Gaucher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none

Annotation

The practical part of this course is carried out in presence. The exercises are partly conducted in the computing lab and are essential for the progress of the participants.
Course: Ore Geology of Metals [T-BGU-109345]

Responsible: Prof. Dr. Jochen Kolb
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103994 - Ore Geology of Metals

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339099</td>
<td>Ore-forming processes</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ) / 🗣️</td>
<td>Kolb, Patten, Walter</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Annotation
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
7.50 Course: Petrology [T-BGU-104854]

Responsible: apl. Prof. Dr. Kirsten Drüppel
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102452 - Petrology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 6339104 Gesteinsbildende Prozesse/ Rock forming processes</td>
<td>3 SWS</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>SS 2020 6339108 Geländeübung/ Field course</td>
<td>1 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
none

Annotation
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
7.51 Course: Physical Chemistry [T-CHEMBIO-103385]

Organisation:
KIT Department of Chemistry and Biosciences

Part of:
M-CHEMBIO-104581 - Physical Chemistry for Applied Geosciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 5206</td>
<td>4 SWS</td>
<td>Lecture (V) /</td>
<td>2 SWS</td>
<td>Practice (Ü) /</td>
<td>2 SWS</td>
<td>Practice (Ü) /</td>
</tr>
<tr>
<td>Physikalische Chemie I</td>
<td>Lecture (V) /</td>
<td>Schuster, Kappes</td>
<td>Practice (Ü) /</td>
<td>Schuster, Kappes, Strelnikov, Assistenten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 20/21 5207</td>
<td>2 SWS</td>
<td>Practice (Ü) /</td>
<td>2 SWS</td>
<td>Practice (Ü) /</td>
<td>2 SWS</td>
<td>Practice (Ü) /</td>
</tr>
<tr>
<td>Übungen zur Vorlesung Physikalische Chemie I</td>
<td>Practice (Ü) /</td>
<td>Schuster, Kappes, Strelnikov, Assistenten</td>
<td>Practice (Ü) /</td>
<td>Schuster, Kappes, Strelnikov, Assistenten</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Online, - Blended (On-Site/Online), - On-Site, - Cancelled

Prerequisites

none
7.52 Course: Project Study [T-BGU-104826]

Responsible: Prof. Dr. Philipp Blum
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102438 - Project Study

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6 SWS</td>
<td>Practice (Ü)</td>
<td>Dozenten der Geowissenschaften</td>
</tr>
<tr>
<td>6339082</td>
<td></td>
<td>Projekstudie/ Project Study</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
none
7.53 Course: Radiogeochemical Field Excercise and Seminar [T-BGU-107623]

Responsible: Dr. Frank Heberling
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102455 - Environmental Geology: Radio- & Chemotoxic Elements

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Heberling, Metz</td>
</tr>
</tbody>
</table>

Annotation
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
7.54 Course: Reservoir-Analogs and Core Description [T-BGU-107624]

Responsible: Prof. Dr. Christoph Hilgers
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103734 - Diagenesis and Cores

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2 SWS</td>
<td></td>
<td>Reservoir Analogs & Core Description</td>
<td>Schmidt, Hilgers</td>
</tr>
</tbody>
</table>

Legend:				

🖥️ Online				
⚡ Blended (On-Site/Online)				
🔘 On-Site				
✗ Cancelled				

Prerequisites

...

Annotation

Seminar as block course during winter term due to visit of industry core shed.
The practical part of this course is carried out in presence. The field course is essential for the study progress of the participants.
7.55 Course: Reservoir-Geology [T-BGU-107563]

Responsible: Prof. Dr. Christoph Hilgers
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103742 - Reservoir-Geology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Event</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 6310600</td>
<td>2 SWS</td>
<td>Reservoir-Geology</td>
<td>Lecture / Practice (VÜ)</td>
<td>Hilgers, Busch</td>
</tr>
<tr>
<td>SS 2020 6310601</td>
<td>4 SWS</td>
<td>Field Seminar Reservoir-Geology</td>
<td>Seminar (S)</td>
<td>Hilgers</td>
</tr>
</tbody>
</table>

Prerequisites

none

Recommendation

the student shall have a basic knowledge of sedimentology and structural geology, such as presented in the module Geologie (Geology), MSc 1st semester

Annotation

The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
7.56 Course: Rock Mechanics and Tunneling [T-BGU-100069]

Responsible: Thomas Mutschler
Martin Wagner

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100069 - Rock Mechanics and Tunneling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 6251804 Basics in Rock Mechanics</td>
<td>2 SWS Lecture / Practice (VÜ)</td>
<td>Mutschler</td>
<td></td>
</tr>
<tr>
<td>SS 2020 6251806 Basics in Tunnel Construction</td>
<td>2 SWS Lecture / Practice (VÜ)</td>
<td>Wagner</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
preparation of the student research project for examination preparation

Annotation
none
7.57 Course: Sedimentary Petrology [T-BGU-107558]

Responsible: Prof. Dr. Armin Zeh
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103733 - Sedimentary Petrology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339040</td>
<td>Sedimentpetrologie</td>
<td>4</td>
<td>Lecture / Practice (VÜ) / 🗣️</td>
<td>Zeh</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites

none
7.58 Course: Structural and Phase Analysis [T-MACH-102170]

Responsible: Dr. Manuel Hinterstein
Dr.-Ing. Susanne Wagner

Organisation: KIT Department of Mechanical Engineering

Part of: M-BGU-105236 - Structural and Phase Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam.</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2125763</td>
<td>Structural and phase analysis</td>
<td>2</td>
<td>Lecture (V) / 🧩</td>
<td>Wagner, Hinterstein</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Oral examination

Prerequisites

none
7.59 Course: Structural Ceramics [T-MACH-102179]

Responsible: Prof. Dr. Michael Hoffmann

Organisation: KIT Department of Mechanical Engineering

Part of: M-BGU-105223 - Structural Ceramics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 2126775 | Structural Ceramics | 2 SWS | Lecture (V) | Hoffmann |

Competence Certificate

Oral examination, 20 min

Prerequisites

none
Course: Student Research Project 'Earthworks and Foundation Engineering' [T-BGU-100178]

- **Responsible:** Dr.-Ing. Andreas Bieberstein
 Dr.-Ing. Peter Kudella

- **Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

- **Part of:** M-BGU-100068 - Earthworks and Foundation Engineering

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6251701</td>
<td>Foundation Types</td>
<td>Completed coursework</td>
<td>2 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>2</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6251703</td>
<td>Basics in Earthworks and Embankment Dams</td>
<td>Lecture / Practice (VÜ)</td>
<td>2 SWS</td>
<td>Bieberstein</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

- report appr. 45 pages;
- definition of a project available from lecturer

Prerequisites

- none

Recommendation

- none

Annotation

- none
7.61 Course: Student Research Project 'Rock Mechanics and Tunneling' [T-BGU-100179]

Responsibility: Thomas Mutschler
Martin Wagner

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
University

Part of: M-BGU-100069 - Rock Mechanics and Tunneling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 6251804</td>
<td>2 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Mutschler</td>
</tr>
<tr>
<td>SS 2020 6251806</td>
<td>2 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

Competence Certificate
report appr. 15 pages;
definition of a project available from lecturer

Prerequisites
none

Recommendation
none

Annotation
none
7.62 Course: Thermal Use of Groundwater [T-BGU-106803]

Responsible: Prof. Dr. Philipp Blum

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103408 - Thermal Use of Groundwater

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td></td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturer / Practice (VÜ)</th>
<th>Blum</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6339115</td>
<td>Thermal Use of Groundwater</td>
<td>2 SWS</td>
<td>Lecture / Practice (VÜ) / 🗣</td>
<td>Blum</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment consists of an oral exam (approx. 25 min), according to § 4 Par. 2 No. 2.
7.63 Course: Urban Ecology [T-BGU-103001]

Responsible: Stefan Norra

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-101568 - Urban Ecology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Seminar Stadtökologie</td>
<td>2 SWS</td>
<td>Seminar (S) / Norra, Böhneke</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
None

Recommendation
None

Annotation
None
Course: Urban Ecology Lecture [T-BGU-106684]

Responsible: apl. Prof. Dr. Stefan Norra

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-101568 - Urban Ecology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>3</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Weeks</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6111211</td>
<td>Stadtökologie</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Norra</td>
</tr>
</tbody>
</table>

Prerequisites

None

Recommendation

None

Annotation

None
7.65 Course: Urban Ecology Practical Course [T-BGU-106685]

Responsible: apl. Prof. Dr. Stefan Norra

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-101568 - Urban Ecology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester</th>
<th>Credit Points</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6111213</td>
<td>Stadtökologie</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
<td>Norra, Gebhardt</td>
</tr>
</tbody>
</table>

Prerequisites

None

Recommendation

None

Annotation

None
7.66 Course: Water and Energy Cycles [T-BGU-106596]

Responsible: Prof. Dr.-Ing. Erwin Zehe
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103360 - Water and Energy Cycles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6224702</td>
<td>Water and Energy Cycles in Hydrological Systems: Processes, Predictions and Management</td>
<td>4 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Zehe, Loritz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🟧 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
submission of at least 50% of the weekly exercises plus a written term paper on a given topic, approx. 10 to 15 pages

Prerequisites
none

Recommendation
none

Annotation
as from summer term 2020 examination of other type
7.67 Course: Water Chemistry and Water Technology [T-CIWVT-107585]

Responsible: Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103753 - Water Chemistry and Water Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>10</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>SWS</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22603</td>
<td>Scientific Principles for Water Quality Assessment</td>
<td>Lecture (V) / 🖥</td>
<td>2</td>
<td>Abbt-Braun</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22621</td>
<td>Water Technology</td>
<td>Lecture (V) / 🖥</td>
<td>2</td>
<td>Horn</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22622</td>
<td>Exercises to Water Technology</td>
<td>Practice (Ü) / 📖</td>
<td>1</td>
<td>Horn, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Prerequisites

None
Course: Water Technology [T-CIWVT-106802]

Responsible: Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103407 - Water Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22621</td>
<td>Water Technology</td>
<td>2</td>
<td>Lecture (V) / 🖥️</td>
<td>Horn</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22622</td>
<td>Exercises to Water Technology</td>
<td>1</td>
<td>Practice (Ü) / 🖥️</td>
<td>Horn, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled